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Abstract 

 

In this project, we implemented and evaluated a range of 

deep learning architectures (both frame-level models and 

video-level models) to tackle the Google Cloud and 

Youtube-8M video understanding challenge (‘YT-8M 

challenge’), a multi-label video classification challenge 

based on the recently released Youtube-8M V2 dataset. Our 

best performing architecture was a novel residual network 

trained on video-level features that achieves a test set GAP 

of 0.801, which placed in the top 20% in the YT-8M 

challenge. The residual network outperformed our LSTM 

model, suggesting that well-designed video-level models 

can outperform frame-level ones and / or learning temporal 

cues is difficult. In addition, audio features were found to 

be important to video classification, materially improving 

model classification performance.  

 

1. Introduction 

Encouraged by positive results in the image and speech 

domain, the application of deep learning to understanding 

the semantic content of videos is an active area of research 

that has broad applications, including search and 

summarization. However, the mix of spatial, temporal and 

acoustic cues makes off-the-shelf deep learning models 

insufficient for understanding video semantics. 

Deep learning has demonstrated impressive results in 

single label classification but achieving similar success in 

the multi-label domain is still an open research problem. 

Multi-label classification is a more general and practical 

problem since many real-world objects, such as videos, 

have a variable number of labels [1]. One of the key reasons 

for this discrepancy is arguably the lack of large-scale video 

classification benchmarks like ImageNet. 

Hence, in late 2016, Youtube released the Youtube-8M 

(‘YT-8M’) dataset, the first large-scale video classification 

benchmark [5], and in early 2017, launched the Google 

Cloud & Youtube-8M Video Understanding Challenge 

(‘YT-8M challenge’), a multi-label video classification 

challenge, to promote advancements in video semantics. 

This project was focused on tackling the YT-8M 

challenge and details our implementation and empirical 

results of different deep learning networks applied to the 

YT-8M dataset. 

2. Related work 

There are two main types of architectures that 

researchers have applied to multi-label video classification 

problems – convolutional neural network and recurrent 

neural network architectures. 

Karpathy et al. explored a variety of convolutional neural 

network (CNN) architectures that were extended to the time 

domain for video classification. They discovered that the 

slow fusion model (balanced approach that slowly fuses 

temporal information throughout the network) consistently 

performed better than the early and late fusion alternatives. 

However, the best spatio-temporal networks only 

surprisingly exhibited a modest improvement over single-

frame models, suggesting local motion cues may not be 

critically important [2]. 

More recently, recurrent neural networks (RNN) have 

achieved state-of-the-art performance in multi-label image 

and video classification due to their ability to learn temporal 

cues and label dependencies. Wang et al.’s CNN-RNN 

framework used RNNs to model the label dependencies in 

multi-label image classification [3]. Ng. et al.’s Long Short-

Term Memory (LSTM, a type of RNN) architectures, which 

explicitly modelled the video as an ordered sequence of 

frames, outperformed CNN temporal pooling models on the 

Sports-1M dataset [4]. 

Given the recent release of the YT-8M dataset, the only 

research detailing empirical performance of neural 

networks trained on the YT-8M dataset is the paper written 

by Google researchers that accompanied the release of the 

dataset. LSTM and Mixture of Experts (MoE) models 

reportedly exhibited the best performance on the dataset 

[5]. 

Residual networks are considered a state-of-the-art 

technique to train very deep architectures. He et al. 

provided empirical evidence that residual learning 

frameworks, which were adopted in the ILSVRC 2015 

winner ResNet, are easier to optimize and gain  accuracy 

from considerably increased depth [6]. 

In this project, we implemented and evaluated a range of 
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different multi-label video classification models on the YT-

8M dataset and to the authors’ best knowledge, is the first 

to present a novel residual network that achieves strong 

performance on the YT-8M dataset. 

3. YT-8M dataset 

The latest version of the YT-8M dataset is version 2. YT-

8M is a large-scale video dataset of over 7 million labelled 

Youtube video IDs (totaling 450,000 hours) across a 

diverse vocabulary of 4,716 labels (3.4 labels per video on 

average). Every label contains at least 101 training 

examples with an average of 3,552 training examples. Table 

1 below summarizes the dataset. 

 

Total no. of videos 7,009,128 

Training set 4,906,660 (~70%) 

Validation set 1,401,828 (~20%) 

Test set 700,640 (~10%) 

Total no. of labels 4,716 

Avg. no. of labels 3.4 per video 

Original video length 120-500 seconds long 

No. of encoded frames Up to 360 frames per video 

Visual features 1,024 dimensional (8-bit each) 

Audio features 128 dimensional (8-bit each) 

Table 1: YT-8M V2 dataset statistics   

 

Figure 1 below shows the dataset is heavily skewed with 

the top 40 labels (out of 4,716) accounting for about 45% 

of total ground truth labels across the training set. 
 

 

Figure 1: Percentage of ground truth labels within top 40 labels 

 

Dataset includes 3.2 billion pre-processed visual / audio 

features that were PCA’ed and quantized (refer to Figure 

2). On a frame level basis, visual features (extracted using 

the Inception Network) are 1,024 dimensional per second 

and audio features (extracted using a VGG-inspired 

acoustic model) are 128 dimensional per second. Frame 

level data is provided at 1-second resolution up to the first 

6 min of each video. Video level data is the simple mean of 

visual and audio features across frames. 

 

 

Figure 2: Visual and audio features pre-processing 

 

Although the pre-processed features make the large-scale 

dataset more manageable, it places two key restrictions on 

possible model architectures that can be applied to the 

dataset: 1) raw pixels are not accessible and so an end-to-

end model from pixels to predictions cannot be learnt; and 

2) motion cues (optical flow) cannot be learnt given the low 

frame rate (i.e. 1 frame per second). 

The dataset is split into three partitions: training (~70%), 

validation (~20%) and test (~10%). 

4. Methods 

A mix of models trained on frame level features only 

(‘frame-level models’) and video-level features only 

(‘video level models’) were implemented and empirically 

tested. Models include: 

• Independent classifiers (video-level model): 

comprises of 4,716 one-vs-all binary logistic 

regression classifiers for each label. 

• Mixture of experts (‘MoE’) (video-level model): 

model comprising of � experts, each being a version 

of the above independent classifiers model. 

• LSTM (frame-level model): multi-layer LSTM 

network based on frame-level features. 

• Fully-connected block network (FC network) (video-

level model): multi-layer feed-forward network 

comprising of repeating fully-connected (FC) with 

ReLU and batch normalization (BN) layers. 

• Residual network (video-level model): multi-layer 

feed-forward network comprising of residual learning 

blocks that have FC with ReLU and BN layers. 

The Youtube-8M Tensorflow starter code in [7] was 

used as a base for training, validation and inference of the 

various model architectures.  

Each model (except LSTM) was trained over 2-3 

epochs with an initial learning rate of 5e-5 to 5e-4 with 

learning rate decay of 0.95 every 4 million examples, and 

batch size of 1,024. The Adam optimizer was chosen for 

training as it adaptively anneals the learning rate in each 
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dimension, thus reducing dependence on initial learning 

rate selection and improving the speed of convergence. 

Sections 4.1 to 4.5 describe each model architecture in 

further detail and section 4.6 outlines the metrics used to 

assess each models’ performance. 

4.1. Independent classifiers 

The model comprises of 4,716 one-vs-all binary logistic 

regression classifiers for each label trained on video-level 

features. Figure 3 below details its architecture. 

Independent classifiers was selected as the baseline 

model given its relative ease of implementation and its 

simple intuitive strategy of resolving a multi-label 

classification problem into multiple single-label 

classification problems. 

During training, the classifiers were independently 

trained on video-level features with L2 regularization 

penalty of 1e-8. 

During inference, each video is scored by each classifier. 

Video-level label scores are then obtained by a simple 

concatenation of all scores across classifiers. 

 

Figure 3: Independent classifiers architecture 

4.2. Mixture of experts (MoE) 

The MoE model comprises of � experts where the final 

video-level prediction is a mix (weighted sum) of the 

predictions from each expert. Figure 4 below details the 

architecture. 

Each expert is a set of independent classifiers (akin to 

section 4.1). In addition to learning the parameters for each 

expert, the model learns the parameters for a gating network 

layer (a fully-connected layer followed by softmax), which 

controls the contribution of each expert to the final video-

level prediction. This essentially results in the model 

learning the optimal mix of different experts over different 

inputs. The model is a classifier of classifiers and the 

intuition is that a combination of experts, particularly ones 

with negatively correlated errors, will improve model 

generalization. 

MoE was chosen for implementation given [5] reported 

it to be one of the highest performing models on the YT-

8M dataset and the prevalent (and often successful) use of 

“kitchen-sink approaches” in similar data challenges, like 

the Netflix challenge. 

A MoE with � � 2 was trained and tested. 

 

 

Figure 4: Mixture of experts architecture 

4.3. LSTM 

The LSTM model is a frame-level model comprising of 

2-layers of LSTM units with hidden state dimension of 

1,024. The number of layers and hidden dimension size 

were selected based on [5]. Figure 5 below shows the 

architecture. 

 

 
Figure 5: LSTM architecture 

 

Given state-of-the-art results achieved by recurrent 

neural networks in precedent research [3, 4, 5], we decided 

to implement one for the YT-8M challenge. In particular, 

LSTMs were selected since they avoid the vanishing and 

exploding gradient issues of vanilla RNNs.  

All frames of a video are passed through two LSTM 

layers. The input to the second LSTM layer is simply the 

output of the preceding layer. Label predictions are 

performed at each time step based on a softmax layer on top 

of the last (second) LSTM layer. 

Training was attempted over one epoch with a batch size 

of 128 (sized based on memory constraints) and gradient 

horizon of 60 seconds as adopted in [5]. i.e. gradients are 

back-propagated every 60 frames. However, as discussed in 

section 5.3, even just one epoch proved to be 

computationally intractable. 
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During inference, video-level predictions were based on 

the softmax output at the last time step � � ��.  

4.4. FC network 

The FC network is a video-level model with a modular 

design made up of seven fully connected blocks, each 

comprising of a fully connected layer with ReLU and batch 

normalization. Figure 6 below details its architecture. 

 

 

Figure 6: FC architecture 

 

The FC network is one of two deep multi-layer video-

level feed-forward designs that were investigated (the other 

being the residual network in section 4.5). These designs 

were examined to determine whether strong performance 

could be obtained based on video-level features (as opposed 

to frame-level features) – a significantly computationally 

less intensive process but the key drawback being the 

inability to learn temporal cues. 

The design makes heavy use of batch normalization to 

provide robustness to parameter initializations and its 

modularity is inspired by the Inception Network. 

4.5. Residual network 

The residual network is the second deep multi-layer 

video-level feed-forward design made up of three residual 

learning blocks, each comprising of 3 x fully-connected, 2 

x ReLU and 2 x batch normalization layers. Figure 7 below 

shows the architecture. 

 

 

Figure 7: Residual network architecture 

The residual network design is inspired by ResNet, the 

winner of the ILSVRC 2015, which is widely regarded as 

the state-of-the-art convolutional network in image 

classification. Given the features are pre-processed (not raw 

pixels), spatial convolutions cannot be performed and 

hence were replaced by fully connected layers. Similar to 

ResNet, the design makes heavy use of batch normalization 

to provide robustness to weight initializations. 

4.6. Evaluation 

The performance of each model was evaluated using the 

following metrics (commonly used in multi-label 

classification). 

Mean Average Precision (mAP) is the unweighted 

mean of all per-label average precisions. It is computed 

using the formulae below, where ��	 is the average 

precision for label 
 in the set of all labels �. ��	 is an 

approximation of the area under the precision-recall curve, 

where the label scores are rounded into buckets of 10�� 

[5]: 

��� �	���		∈� 	 ��	 � � �������
��� ���������  �������! 

 

 The precision ����	and recall ����of each label at a 

given threshold � is calculated using the formulae below, 

where Ⅱ�. �  is the indicator function, #$  is the rounded 

score of label � in the set % of all labels for each video and  &$ ∈ '0, 1) denotes the ground truth of label � [5]. 

���� � 	∑ Ⅱ�#$ 	+	$∈, ��&$∑ Ⅱ�#$ +$∈, �� 	 ���� � 	∑ Ⅱ�#$$∈, 	+ 	��&$∑ &$$∈, 	
 

Hit@k is the fraction of test examples that contain at least 

one of the ground truth labels in the top k predictions. This 

is computed via the formula below, where -./��,	 0 � is 

the rank of label 
 for video 1 in the set of examples 2, 3�  

is the set of ground-truth labels for video 1  and ∨ is the 

logical OR operation [5]. 

1|2|�∨	∈67�∈8 Ⅱ�-./��,	 0 �� 
Precision at Equal Recall Rate (PERR) is the video-level 

annotation precision when the same number of labels per 

video are retrieved as there are in the ground-truth . This is 

computed using the formula below (using the same notation 

as Hit@k) [5]: 

1|2: |3�| : 0| � ; 1|3�| � Ⅱ�-./��,	 0 |3�|	∈67
�<�∈8:|67|=�|
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Global Average Precision (GAP) is the average precision 

based on the top 20 predictions per example. GAP was 

computed on the validation set and the test set. The latter 

was used for leaderboard ranking in the YT-8M challenge. 

It is computed as follows, where > is the number of final 

predictions (number of test examples x 20), ?�@�  is the 

precision and -�@� is the recall. The key difference between 

GAP and mAP is that GAP calculates the average precision 

only over the top 20 predictions per video. 

3�� ��?�@�Δ-�@�B
C��  

5. Results and discussion 

The following section discusses the results and 

observations of implementing and testing each of the 

models previously discussed in section 4. 

5.1. Summary of results 

Table 2 and Figure 8 below summarize the performance 

of the models on the validation and test sets. 

 

Model Hit@1 PERR mAP GAP 

Ind. classifiers  

(w/out audio) 
0.789 0.646 0.376 0.707 

MoE  

(w/out / with audio) 

0.728 / 

0.772 

0.562 / 

0.611 

0.110 / 

0.125 

0.611 / 

0.665 

FC – 2 x layers 

(w/out / with audio) 

0.792 / 

0.826 

0.646 / 

0.687 

0.244 / 

0.283 

0.717 / 

0.758 

FC – 5 x layers 

(w/out / with audio) 

0.756 / 

0.844 

0.595 / 

0.712 

0.111 / 

0.346 

0.657 / 

0.785 

FC – 7 x layers 

(w/out / with audio) 

0.772 / 

0.807 

0.613 / 

0.653 

0.125 / 

0.144 

0.675 / 

0.719 

Residual network 

(with audio) 
0.853 0.725 0.399 0.800 

LSTM 

(w/out audio) 
0.841 0.708 - 0.784 

Table 2: Model performance on the validation set. Table entries 

with two entries ([x] / [y]) denote the performance without audio 

features [x] and with audio features [y]. 

 

 

Figure 8: Model performance on the test set (GAP). Note this is 

test set GAP (not validation set GAP) and hence metrics are 

slightly different to Table 2 above. 

 

Overall, the residual network (video-level model) 

exhibited the best accuracy with a test set GAP of 0.801, 

outperforming the frame-level model LSTM. Sections 5.2 

to 5.6 describe our methodologies and observations leading 

towards our best performing model, the residual network. 

5.2. Independent classifiers – a baseline model 

Although a naive approach to multi-label classification, 

the independent classifiers model performed reasonably 

well, achieving an overall test set GAP of 0.707. 

The MoE model did not exhibit an improvement over the 

independent classifiers model. However, in hindsight, the 

MoE model may have required a larger number of training 

epochs for a fairer comparison given the larger number of 

model parameters. 

Despite being the least computationally intensive to train 

(given its simplistic structure), a key disadvantage of the 

independent classifiers is that it ignores label dependencies 

that could have been exploited to improve classification 

performance. Figure 9 is a sparsity graph which shows that 

there are underlying relationships in the data between 

groups of examples and groups of labels. The graph on the 

left hand side shows the original data – 1,000 randomly 

sampled training examples (rows) with their ground truth 

labels represented by each blue dot (columns). The graph 

on the right hand side shows the same data after performing 

co-clustering of both examples and labels. The dense block-

like structures in the co-clustered graph represent regions 

where strong associative relationships exist between groups 

of examples and groups of labels. 

 

Figure 9: Label dependencies in the data for 1,000 random 

examples. LHS shows original data. RHS shows co-clustered data. 

 

In addition, training a model based on video-level 

features ignores temporal cues as video-level features are a 

simple mean of frames. 

These two key disadvantages prompted us to search for 

model architectures that could exploit these label 

dependencies and temporal cues to achieve higher 

performance. Hence, we decided to implement a LSTM 

network given they are able to learn both such relationships 

by storing and passing information between cells via a 

hidden state. 
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5.3. Learning temporal cues challenging 

However, due to computational resource constraints on 

Google Cloud ML, training a LSTM on frame-level 

features over such a large-scale dataset (over 7 million 

examples with up to 360 frames each) ended up being a 

computationally intractable task, particularly over the 

relatively short timeframe of this project. Despite utilizing 

four GPUs, Google Cloud ML was unable to complete a 

single epoch of LSTM training over even one-week of 

training. 

It is believed that one of the key reasons for its 

computational intractability is the significantly smaller 

batch-size during training due to memory constraints (128 

in LSTM vs. 1,024 in video-level models), resulting in 

higher computational overhead per example. In addition, 

training over frame-level features required up to six pairs of 

forward and backward passes (as opposed to a single pair 

of passes in video-level models) for each block of 60 frames 

per video. 

Hence, we decided to investigate more sophisticated 

models based on video-level features (as opposed to frame-

level features) that were more computationally tractable 

over this project’s timeframe. 

5.4. Video-level models – FC network 

Although they are unable to learn temporal cues (since 

trained on video-level features not frame-level features), 

video-level models were significantly more 

computationally efficient and exhibited impressive 

performance relative to the frame-level model, LSTM. 

The first model that was implemented was the FC 

network made up of seven fully-connected blocks 

(referenced as ‘layers’ here for simplicity), each comprising 

of repeating fully-connected layers with ReLU and batch 

normalization. 

FC network performance for varying hidden dimension 

sizes and number of fully connected blocks was empirically 

tested. Highest test set GAP was achieved using seven fully 

connected blocks. Beyond which, there were diminishing 

returns on performance improvement for an increased 

number of layers and complexity. The optimal hidden 

dimension sizes were empirically found to be (4, 8, 4, 2, 4, 

4, 2), where each number represents a multiple of the input 

feature dimension size of the respective layer of the FC 

network. e.g. the first layer had a hidden dimension size of 

4 x input feature dimension size. 

The promising results of the FC network encouraged us 

to explore options for improving performance of video-

level models, in particular, feature selection (incorporation 

of audio features in section 5.5) and model architecture 

(residual networks in section 5.6). 

5.5. Improved performance with audio features 

Incorporation of video-level audio features in addition to 

visual features materially improved performance of the FC 

network.  

Figure 10 shows that the addition of audio features 

resulted in a 5-7% increase in Hit@1, PERR and GAP and 

about a 15% increase in mAP for the FC network with 7 x 

layers. 

 

 
Figure 10: FC 7 x layers network with and without audio features  

 

This marked improvement suggests that acoustic cues are 

material in video classification, noting their inclusion only 

increased the total feature dimension size by about 13% 

(feature dimension size increase from 1,024 to 1,024 + 

128). 

5.6. Outperformance of residual networks 

Our best performing model was the residual network, 

which achieved a test set GAP of 0.801, which placed us in 

the top 20% of competitors in the YT-8M challenge. 

Despite ignoring temporal cues, well-designed video-level 

models like the residual network can outperform frame-

level ones, like LSTM. 

This outperformance is attributable to the residual 

network’s unique structure, which makes it easier to 

optimize and more robust to hyperparameter selection. 

Learning residual functions referenced with respect to input 

layers is easier than learning unreferenced ones in 

traditional feed-forward networks [6]. The references with 

respect to input layers inject gradient directly from output 

to input layers during back-propagation, thus improving 

gradient flow, particularly in deep networks. 

Figure 11 below shows the learning curve (loss vs. 

training steps) of the residual network vs. the FC network 

(7 x layers). It demonstrates the considerably faster rate of 

convergence of the residual network, taking only about one-

third the total steps of the FC network to approach the same 

level of total loss. 
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Figure 11: Learning curve of residual network vs. FC network 

6. Conclusion and future work 

We have explored a mix of both frame-level and video-

level models to tackle the YT-8M challenge, a multi-label 

video classification problem. 

Our best performing model was a novel residual network, 

inspired by ResNet, which achieved a GAP of 0.801 on the 

test set and placed us in the top 20% of competitors in the 

challenge. The strong performance of the residual network 

is due to its unique structure that makes it easier to optimize 

and more robust to hyperparameter selection. 

Despite ignoring temporal cues, well-designed video-

level models (like the residual network) can outperform 

frame-level ones, such as LSTM. The incorporation of 

audio features significantly improved performance, 

suggesting acoustic cues have material predictive power in 

video classification. 

LSTM was computationally intractable over the 

timescale of this project due to Google Cloud ML resource 

constraints. Hence, we were not able to achieve competitive 

results using LSTM on this dataset despite state-of-the-art 

results reported by precedent research on other similar 

datasets. 

We plan on performing further work in a number of 

areas. Given the strong results exhibited by models trained 

on video-level features, which are a simple mean of frames, 

we would like to explore whether there are more 

sophisticated frame aggregation methods that can generate 

features with greater predictive power. In addition, we 

would like to explore other recurrent neural network 

architectures that may be more computationally tractable, 

such as training on a subsampling of frames per example 

(as opposed to all frames). In particular, methods for 

determining the optimal subsample from a collection of 

frames, such as bloom filters, autocorrelation or locality 

sensitive hashing. 
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