
 

 

 
Abstract 

 
Effectively classifying amateur videos of activities is an 

important problem to solve, since it is much more difficult 
than classifying stable, professionally filmed videos. In 
this paper, we apply a variety of convolutional neural 
network architectures on the challenging Sports Videos in 
the Wild dataset, which contains non-professional, noisy 
videos of sports filmed on mobile devices. Using our own 
relatively simple architectures, we were able to achieve up 
to 47.7% validation accuracy, while our most successful 
architecture based on a pre-trained ImageNet model 
achieved 84.3% validation accuracy and 75.9% test 
accuracy for the 30-class classification problem. 
 

1. Introduction 
Our work is related to the task of activity classification 

in noisy sports videos. In particular, our dataset consists of 
thousands of amateur videos of a number of different 
sports and activities, shot on mobile device cameras in a 
variety of locations and from a variety of non-standard 
angles. We seek to automatically identify which sport is 
present in each of these videos. This problem is widely 
applicable beyond the sports world; classifiers and 
architectures that perform well at this task on our sports 
videos should also be capable of good performance on 
activity classification tasks in a variety of other areas, such 
as surveillance or automatic content tagging for online 
videos. Video processing can be computationally 
challenging, as videos are composed of many individual 
image-sized frames which need to be processed. One 
approach to video classification, then, is to simply 
examine frames as individual images and attempt to 
classify them, and then combine the results into a single 
output classification for the video as a whole. While this 
approach makes some intuitive sense, because a human 
can likely distinguish between hitting a baseball and 
shooting a basketball with even a single frame, it also 
seems to discard much of the temporal information 
encoded in the source videos. Thus, we will also attempt 
to capture this temporal information in some way, in 

addition to simply processing the spatial dimensions of 
input frames. 

1.1. Previous work 

Recent work has been done on the video classification 
problem with convolutional neural networks, much of 
which has focused on ways to preserve the temporal 
information encoded in video frames. For instance, Ji et al. 
in [1] propose what they refer to as 3D convolutions 
across spatial and temporal dimensions, with the goal of 
extracting information about movement that occurs 
between frames. Meanwhile, Ng et al. [2] propose a pair 
of distinct approaches: the first relies on temporal pooling 
methods, while the second uses LSTM cells to process the 
videos, which have in this case been treated as ordered 
sequences of frames fed to an RNN. Meanwhile, Wang et 
al. [3] propose slightly more widely-applicable techniques 
for action recognition that go beyond layer types and 
model architectures, including the idea of breaking each 
video up into chunks, classifying each chunk as its own 
miniature video, and then aggregating the predictions 
across all of the chunks to produce a final prediction for 
each full video. Karpathy et al. [4] also investigated 
different strategies for video classification that relied on 
fusing information from different frames. In particular, 
they invested 3 different strategies: early fusion, where the 
frames are fused in the first convolution of the network, 
late fusion, where the frames are fused just before the 
softmax classifier, and slow fusion, where pairs of frames 
are fused gradually throughout the network. They found 
that slow fusion performed the best out of those models. 
Some previous work has also incorporated additional 
information such as audio spectrograms and optical flow 
information. Wu et al. used these sources in addition to the 
frame pixel values as features in a model that used 
convolutional nets and LSTMs to classify videos [5]. Our 
work is somewhat unique in particular due to our chosen 
dataset: Sports Videos in the Wild, which we will discuss 
in the next section. 

1.2. Dataset 

For our project, we used the Sports Videos in the Wild 
(SVW) dataset from Michigan State [6]. The dataset 
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consists of roughly 4200 videos (average length 11.6 
seconds) encompassing 44 different activities across 30 
different sports. Baseball, for instance, includes both 
hitting and pitching, which makes classification more 
challenging. All of the videos are labeled with their 
corresponding sport, and about half are labeled with the 
specific activity. The most interesting characteristic is that 
the videos are user-generated, which means the activities 
take place in a variety of non-standard locations and are 
filmed on smartphones or tablets. The dataset is also 
relatively small, which suggests that a transfer learning 
approach, where we begin with a pre-trained model and 
then tune it on our specific dataset, might be most 
effective. In our experiments, we split the dataset up into 
3400 training examples, 300 validation examples, and 
approximately 500 test examples. To demonstrate how 
noisy our dataset is, figure 1 below shows screenshots of 7 
different videos that are all labeled as football. Notice that 
the videos in this figure include an a fairly normal game, 
and indoor game, single players kicking a ball or doing 
drills, a kid in a football helmet pushing a tire, and several 
people in the ocean miming football throws.  

 
Figure 1: Videos labeled as football 

 
 
In the paper that introduces the SVW dataset, the 

authors provide three baseline models, none of which 
involve neural networks, evaluated on the sport 
classification task. Two of these achieve accuracies 
nearing 40%: their context-based approach and their 
motion-assisted context approach achieve accuracies of 
37.08% and 39.13%, respectively. Their more complex 

motion-based approach, which applied video stabilization 
and other techniques, achieved an accuracy of 61.53%. 
The authors also note that this approach yielded accuracies 
above 90% on a nicer dataset, which hints at the 
complexity of classifying these noisy, real-world sports 
videos. Rachmadi et al. [7] are able to achieve accuracies 
just above 80% using CNNs and classifying on a frame-
by-frame basis. 

2. Technical approach 
We tested a variety of features and model architectures 

in search of the best possible performance we could find. 
Initially, we tried a variety of relatively simple models, 
which we trained from scratch. For most of these models, 
we extracted a fixed number of frames from each video 
(most often 10 or 16, evenly spaced), which we then 
cropped to either 270x270, 224x224, or 200x200 
depending on the current experiment. We sampled video 
frames at a rate of 10 frames per second, so when we refer 
to taking consecutive frames of a video they are spaced 
0.1 seconds apart temporally. 

2.1. Simple baseline model 

To begin, we implemented a simple baseline model that 
uses two conv-relu layers on the individual frames with a 
stride of 2, followed by averaging the output across all 
frames and finishing with a fully connected layer to 
compute scores for each class. We also updated it to 
include batch normalization following each of the two relu 
steps. Finally, we incorporated dropout in addition to 
batch normalization, which ultimately yielded the best 
performance. We also experimented with adding one or 
two additional convolutional layers and a second affine 
prediction layer, but surprisingly these more complex 
architectures yielded lower validation scores. 

2.2. Chunking 

One of our attempts to capture some additional 
temporal information from our videos was the idea from 
[3] mentioned earlier, where we segment each video into 
some number of chunks. Then, we treat each chunk as a 
video to be classified. Finally, we combine the chunk-level 
predictions into a single prediction for the whole video. 
This is somewhat similar to our naive approach with the 
simple model where we began with 10 frames from each 
video, except that rather than averaging the network’s 
outputs for each frame and then classifying, we actually 
output a class prediction for each chunk. Then, we simply 
treat each chunk’s classification as a single vote, and our 
video-level prediction is the class with the most votes. 

We put this technique in practice with the simple model 
as follows: First, we looped all videos shorter than three 
seconds so that each video would be at least three seconds 
long. Then, we broke each video into ten chunks, and 



 

 

extracted the first three frames from each chunk. We 
classified each chunk based on its three frames using the 
simple model with dropout and batch normalization, 
averaging the three frames and outputting a prediction for 
the chunk, then aggregated the 10 chunk scores and took 
the most popular prediction as our output for the whole 
video. 

 
2.3 Three-Dimensional Convolutions 
 

Our next attempt to capture temporal information from 
our videos was the three-dimensional, or temporal, 
convolution layer described in [1]. At a high level, the idea 
follows quite naturally from two-dimensional, or spatial, 
convolutions with which we have become intimately 
familiar this quarter. We expand the idea to three 
dimensions by stacking contiguous frames on top of each 
other to form a three-dimensional tensor with dimensions 
of width, height, and time, and then use three-dimensional 
convolution filters, which slide along the spatial 
dimensions of our input tensors. Dot products are 
computed over the three-dimensional intersection between 
the filter and the input tensor, rather than the two-
dimensional intersection that we’re used to for image 
recognition. 

We tried a simple architecture to see if it would be 
worthwhile to pursue further. Our initial model featured 
two layers of temporal convolutions. The first layer 
featured 16 filters with spatial dimensions of 7x7 and a 
temporal width of three, and the second layer featured an 
additional 16 filters of spatial size 5x5 and again a 
temporal width of three. After each layer, we used a ReLU 
activation and then 2x2 maximum pooling along the 
spatial dimensions. We then reshaped the output into a 
vector and used an affine layer to make the final 
classification prediction. For each video, we sampled 
thirty frames (looping for the few videos under three 
seconds) at even intervals. We also tried the model with 
batch normalization, but it did not perform as well. This 
model did not perform as well as the simple model 
featuring two-dimensional convolutions, so we chose not 
to pursue it much further. 

 
2.4 Simple Recurrent Neural Network 
 

We also attempted a simple version of a recurrent 
neural network (LSTM) to see if preliminary results 
looked fruitful. Recall that a recurrent neural network 
maintains an internal hidden state and gets a new input at 
each time step. It then computes a function of the hidden 
state and the new input to produce an output vector and a 
new hidden state. We thought a recurrent neural network 
might be a logical choice for our problem because it can 
take a variable number of frames as input, and thus we 
could sample frames from each video at the same interval, 

rather than evenly spaced, which we thought might be 
more informative. We built our LSTM layer on top of our 
simple two-layer architecture, passing each frame’s 
encoding to the LSTM step by step rather than averaging 
all of the frames together for a specific video. 
Unfortunately, the results from our simple model were 
substantially worse than for our simple model, so we 
decided not to spend additional time fine-tuning it. 

 
2.5 Pre-Trained Models 
 

Next, we tried using pre-trained ImageNet models fine-
tuned on our video dataset. For our pre-trained model, we 
chose to use Inception-Resnet-v2, described by Szegedy et 
al. in 2016 [8], because it was the highest performing 
ImageNet classification model we could find and had a 
pretrained implementation readily available in 
TensorFlow-Slim. Inception-Resnet-v2 combines the 
Inception modules created 2015 by Szegedy et al. [9] that 
utilize a Network in Network structure and increase the 
expressivity of a network while constraining computing 
requirements and the residual connections proposed by He 
et al. [10] in Resnet that dramatically increase the depth 
with which networks can be efficiently trained. This 
model was used on individual frames, and the outputs 
were either averaged across all frames or fed into an 
LSTM before classification. We experimented with 
allowing different amounts of layers to be fine-tuned in 
this model because we expected that the lower levels of 
the model detected features like edges and corners, which 
would be the same in our dataset as in ImageNet. We tried 
3 variations of this: one where the entire model could be 
fine-tuned, one where only the top half could be fine-
tuned, and one where only the final 2 layers could be fine-
tuned.  
 We also experimented with different methods of 
incorporating the temporal information after using 
Inception-Resnet-v2 on the individual frames. First, we 
tried just using the first frame of the video to see if we 
could obtain a high classification accuracy from the single 
frame. Next, we tried a simple model that averaged the 
output from 10 evenly spaced frames in the video before 
feeding into a softmax classifier. Lastly, we tried feeding 
the frame outputs into an LSTM. For this model, we 
looked at the first 8 seconds of the video and fed a frame 
from every half-second into the LSTM. Any videos 
shorter than 8 seconds were zero-padded. We then used 
the output of the final LSTM cell to feed into a softmax 
classifier. 
 
 
 
 



 

 

3. Results 
Table 1: Validation Results of Different Models 

  
As is shown in Table 1 above, the pretrained model 

dramatically outperformed the models trained from 
scratch. Among our models trained from scratch, the 
chunking model performed the best, and the 3D 
convolution. Overall, our best model by far was the 
Inception-Resnet-v2 model averaged across frames, which 
surprisingly outperformed the LSTM version. 
Within the pretrained model, we experimented with 
allowing different amounts of backpropagation into the 
pretrained layers. As shown in Table 2 below, it 
performed the best when allowing backpropagation 
through all layers. 
  
Table 2: Effect of allowing different amounts of 
backpropagation in Inception-Resnet-v2 (trained only on 
single frame of video) 

  
 Finally we tested our best model, the Inception-Resnet-
v2 averaged across frames, on the test set and achieved a 
test accuracy of 75.9% While this was a significant drop 
from our validation accuracy of 84.3%, this drop was not 
particularly surprising to us because the validation 
accuracy was fluctuating significantly between epochs. 

Furthermore, this is still a very impressive result 
considering this is a 30-class problem with very noisy 
data. Table 3 below shows our accuracies on each class.  
  
Table 3: Accuracies by class 

  
 
4. Analysis 
 
We break up our analysis into several topics of interest. 
 
4.1 Transfer Learning 
 

It is not particularly surprising that the models that were 
by far the most successful were those based on the pre-
trained Inception-Resnet network. Pre-trained models like 
that one have already been trained on a huge dataset like 
ImageNet to effectively detect edges, corners, and other 
important attributes, and are thus able to output very 
useful features. This model is also far more complex than 
any of those we trained from scratch, so it is not an 
entirely fair comparison. Nevertheless, the performance 
difference was substantial. 

Model Validation Accuracy 

Simple Baseline  43.4% 

Chunking  47.7% 

3D Convolutions 41.7% 

Inception-Resnet-v2, single 
frame 

72.3% 

Inception-Resnet-v2, 
averaged across frames 

84.3% 

Inception-Resnet-v2, LSTM 74.7% 

Model Validation Results 

Backpropagating through 
entire model 

72.3% 

Backpropagating through 
top half 

71.0% 

Backpropagating only 
through 2 top layers 

61.7% 

Gymnastics 72% Golf 67% 

Diving 75% Hurdling 71% 

Tennis 71% Discus 78% 

Longjump 100% BMX 86% 

Pole Vault 91% Javelin 50% 

Rowing 100% Hammer 64% 

Skiing 71% Football 83% 

Volleybal 98% Running 12% 

Cheerleading 90% Highjump 85% 

Baseball 88% Basketball 66% 

Shot Put 77% Wrestling 82% 

Swimming 100% Boxing 71% 

Hockey 86% Socker 83% 

Bowling 90% Skating 100% 

Archery 90% Weightlifting 100% 



 

 

 However, we were surprised that our best results came 
when allowing full backpropagation. Since our dataset is 
so small compared to the ImageNet dataset used for 
pretraining, we expected that allowing full 
backpropagation would lead to substantial overfitting. 
Furthermore, the lower levels of the network theoretically 
are mostly just detecting things like edges and corners, 
which are the same in any dataset. However, full 
backpropagation still performed the best. This suggests 
that detecting sports requires different low-level features 
than the categories in ImageNet. One possible explanation 
is that the ImageNet classes are concerned mostly with the 
foreground object, whereas with sports, the background is 
much more important (i.e. a person running could mean 
virtually any sport depending on what kind of field or 
court they are on.) 
 Another surprise to us was that the LSTM performed 
significantly worse than the averaging model. This model 
didn’t overfit as much on the training data, so we think it’s 
possible that more hyperparameter tuning could have 
improved the model. Since this model was extremely slow 
to train (~1.5 hours per epoch), we weren’t able to 
experiment as much as we would have liked with different 
hyperparameters.   
 
4.2 Overfitting 
 

Our dataset is relatively small, and one thing we 
struggled with throughout our experiments was the gap 
between training and validation accuracy. All of the 
models we trained from scratch tended to overfit our 
training data after a few epochs. Introducing techniques 
like batch normalization and dropout did tend to improve 
validation accuracy, but the models incorporating those 
ideas continued to overfit. We did not find a good solution 
to mitigate this problem on our trained-from-scratch 
models, though we did not try things like data 
augmentation or training on additional labeled data to try 
to narrow the gap in performance between training and 
validation. 
 
4.3 Temporal Convolutions 
 

We were a bit disappointed by the performance of our 
simple architectures featuring temporal convolutions, 
since these models did not even perform as well as our 
simple architectures featuring standard convolutional 
layers. One possible issue we identified was that there was 
a reasonably wide variety in source video length, which 
meant that the thirty frames we sampled from each video 
featured different-length gaps in between them. This 
seems like it could certainly harm performance of three-
dimensional convolutional layers, because the stacks of 
frames along temporal dimensions now span different 
lengths of time, which might make it difficult for our 

three-dimensional features to learn good, generalizable 
weights. Perhaps a more effective approach would have 
been to zero-pad shorter videos, or even to simple look all 
of the short videos to a longer length, and then simply 
attempt to classify a fixed-size chunk from each video, 
such that the gaps between frames were equivalent for all 
videos.  
 
4.4 Feature Selection 
 

We did a bit of experimentation with different features, 
but our tests were certainly not comprehensive. In general, 
our approach was to take some number of evenly spaced 
frames from each video, most often between 10 and 30. 
The biggest decision we made related to feature selection 
was at the final prediction layer for our models. Initially, 
we started by averaging the features derived from each 
frame and then outputting a prediction for each video’s 
averaged features, but we also tried other methods like 
feeding each frame’s output features to an RNN or even 
just concatenating them all into a single long vector. 
Results were far from conclusive as to which method was 
best, but in general the averaging method outperformed 
the RNN-based methods we tried. We also had to crop our 
frames, because various videos had different sizes. We 
initially cropped each frame to 270x270, and later reduced 
to 224x224 and even 200x200 for some models, due to 
computational restraints. This cropping was likely unfair 
to some videos, because larger videos had more 
information discarded than smaller videos. We would have 
liked to try zero-padding as a way to standardize video 
size without this asymmetric discarding of information, 
but at times it would have made our training quite slow. 
 
5. Conclusions and Future Work 
 
Given additional time and computational resources, there 
is much more we could try in order to achieve optimal 
performance on our dataset. 
 
5.1 Conclusions 
 

Our biggest takeaway from this project, without a 
doubt, is that using a pre-trained model is definitely the 
way to go. Not only did we not have to make complicated 
architectural decisions ourselves, but we also reaped the 
benefits of hours and hours of GPU training time where 
the network already learned how to recognize informative 
features. After a relatively quick fine-tuning on our actual 
data set, we were able to nearly double the performance of 
the simpler models we developed and trained from 
scratch. There is a reason these models achieve state-of-
the-art performance: they’re really good. Our work shows 
that they are not just good at their original ImageNet task, 
either. They can easily be tweaked to classify different, 



 

 

messy datasets as well. This lesson is broadly applicable to 
any smaller dataset; when in doubt, try starting with a 
good ImageNet model and see if transfer learning yields 
good results. In our experience, it is likely to. 
 Another observation we made was that in general, we 
had more success with treating frames as still images to be 
classified than by attempting to capture complex temporal 
features. Intuitively, this makes some sense, because with 
a few exceptions, a person can likely distinguish among all 
of these sports pretty easily given a handful of frames. 
That said, simple techniques like breaking videos into 
chunks did appear to yield some performance gains, 
suggesting that temporal information is still useful. 
 Much like the results from [5], our models tended to 
have much more trouble with certain classes. This 
suggests that something about these classes is confusing or 
complicated. In the case of running and long jump, for 
instance, the sports look quite similar, especially when the 
system only gets to see one frame at a time. This leads us 
to believe that an approach like one-versus-all models for 
these problematic classes combined in some sort of 
ensemble might be a worthwhile addition to a real system 
where our goal was to classify this dataset as accurately as 
possible. Baseball, long jump, and running, for instance, 
tended to have relatively low accuracies across models. If 
we could find a model that did well on these three classes, 
it would likely be a great addition to our system and 
increase our overall accuracy by a few percentage points. 
Sadly, we did not have a chance to experiment as much as 
we would have liked in this regard. 
 
5.2 Future Work 
 

Many of our suggestions for future work are based on 
issues raised in the conclusion section or earlier in the 
paper. If we had more time, we would like to conduct 
more experiments with different model architectures and 
features. Our best results by far came from the pre-trained 
ImageNet model architectures we tried, so it seems to 
make the most sense to continue work on those models 
initially, perhaps by exploring different features which 
could be fed into the model. We would also be interested 
in running additional experiments related to the layers we 
built on top of the pre-trained model. So far, our most 
successful prediction layer averaged the results of ten 
input frames before making a prediction with an affine 
layer, but this approach does not seem to fully capture the 
temporal information available to us in videos. In fact, it 
effectively treats the task as one of image classification, 
rather than video classification. We would like to run more 
experiments to try to find new and innovative ways to 
capture additional temporal information, because 
unfortunately the methods we did attempt did not work 
particularly well.  

 Our experiment with chunking the videos yielded gains 
of a few percentage points with the simple model. This 
suggests that perhaps a chunking approach paired with one 
of the pre-trained models might yield small performance 
gains as well, so we would be interested in trying that and 
other techniques in conjunction with our best-performing 
models to try to obtain peak performance. 
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