

Abstract

Effectively classifying amateur videos of activities is an

important problem to solve, since it is much more difficult
than classifying stable, professionally filmed videos. In
this paper, we apply a variety of convolutional neural
network architectures on the challenging Sports Videos in
the Wild dataset, which contains non-professional, noisy
videos of sports filmed on mobile devices. Using our own
relatively simple architectures, we were able to achieve up
to 47.7% validation accuracy, while our most successful
architecture based on a pre-trained ImageNet model
achieved 84.3% validation accuracy and 75.9% test
accuracy for the 30-class classification problem.

1. Introduction
Our work is related to the task of activity classification

in noisy sports videos. In particular, our dataset consists of
thousands of amateur videos of a number of different
sports and activities, shot on mobile device cameras in a
variety of locations and from a variety of non-standard
angles. We seek to automatically identify which sport is
present in each of these videos. This problem is widely
applicable beyond the sports world; classifiers and
architectures that perform well at this task on our sports
videos should also be capable of good performance on
activity classification tasks in a variety of other areas, such
as surveillance or automatic content tagging for online
videos. Video processing can be computationally
challenging, as videos are composed of many individual
image-sized frames which need to be processed. One
approach to video classification, then, is to simply
examine frames as individual images and attempt to
classify them, and then combine the results into a single
output classification for the video as a whole. While this
approach makes some intuitive sense, because a human
can likely distinguish between hitting a baseball and
shooting a basketball with even a single frame, it also
seems to discard much of the temporal information
encoded in the source videos. Thus, we will also attempt
to capture this temporal information in some way, in

addition to simply processing the spatial dimensions of
input frames.

1.1. Previous work

Recent work has been done on the video classification
problem with convolutional neural networks, much of
which has focused on ways to preserve the temporal
information encoded in video frames. For instance, Ji et al.
in [1] propose what they refer to as 3D convolutions
across spatial and temporal dimensions, with the goal of
extracting information about movement that occurs
between frames. Meanwhile, Ng et al. [2] propose a pair
of distinct approaches: the first relies on temporal pooling
methods, while the second uses LSTM cells to process the
videos, which have in this case been treated as ordered
sequences of frames fed to an RNN. Meanwhile, Wang et
al. [3] propose slightly more widely-applicable techniques
for action recognition that go beyond layer types and
model architectures, including the idea of breaking each
video up into chunks, classifying each chunk as its own
miniature video, and then aggregating the predictions
across all of the chunks to produce a final prediction for
each full video. Karpathy et al. [4] also investigated
different strategies for video classification that relied on
fusing information from different frames. In particular,
they invested 3 different strategies: early fusion, where the
frames are fused in the first convolution of the network,
late fusion, where the frames are fused just before the
softmax classifier, and slow fusion, where pairs of frames
are fused gradually throughout the network. They found
that slow fusion performed the best out of those models.
Some previous work has also incorporated additional
information such as audio spectrograms and optical flow
information. Wu et al. used these sources in addition to the
frame pixel values as features in a model that used
convolutional nets and LSTMs to classify videos [5]. Our
work is somewhat unique in particular due to our chosen
dataset: Sports Videos in the Wild, which we will discuss
in the next section.

1.2. Dataset

For our project, we used the Sports Videos in the Wild
(SVW) dataset from Michigan State [6]. The dataset

Convolutional Neural Networks for Classification of Noisy Sports Videos

Joey Asperger

Stanford University
joey2017@stanford.edu

Austin Poore
Stanford University

hapoore@stanford.edu

consists of roughly 4200 videos (average length 11.6
seconds) encompassing 44 different activities across 30
different sports. Baseball, for instance, includes both
hitting and pitching, which makes classification more
challenging. All of the videos are labeled with their
corresponding sport, and about half are labeled with the
specific activity. The most interesting characteristic is that
the videos are user-generated, which means the activities
take place in a variety of non-standard locations and are
filmed on smartphones or tablets. The dataset is also
relatively small, which suggests that a transfer learning
approach, where we begin with a pre-trained model and
then tune it on our specific dataset, might be most
effective. In our experiments, we split the dataset up into
3400 training examples, 300 validation examples, and
approximately 500 test examples. To demonstrate how
noisy our dataset is, figure 1 below shows screenshots of 7
different videos that are all labeled as football. Notice that
the videos in this figure include an a fairly normal game,
and indoor game, single players kicking a ball or doing
drills, a kid in a football helmet pushing a tire, and several
people in the ocean miming football throws.

Figure 1: Videos labeled as football

In the paper that introduces the SVW dataset, the

authors provide three baseline models, none of which
involve neural networks, evaluated on the sport
classification task. Two of these achieve accuracies
nearing 40%: their context-based approach and their
motion-assisted context approach achieve accuracies of
37.08% and 39.13%, respectively. Their more complex

motion-based approach, which applied video stabilization
and other techniques, achieved an accuracy of 61.53%.
The authors also note that this approach yielded accuracies
above 90% on a nicer dataset, which hints at the
complexity of classifying these noisy, real-world sports
videos. Rachmadi et al. [7] are able to achieve accuracies
just above 80% using CNNs and classifying on a frame-
by-frame basis.

2. Technical approach
We tested a variety of features and model architectures

in search of the best possible performance we could find.
Initially, we tried a variety of relatively simple models,
which we trained from scratch. For most of these models,
we extracted a fixed number of frames from each video
(most often 10 or 16, evenly spaced), which we then
cropped to either 270x270, 224x224, or 200x200
depending on the current experiment. We sampled video
frames at a rate of 10 frames per second, so when we refer
to taking consecutive frames of a video they are spaced
0.1 seconds apart temporally.

2.1. Simple baseline model

To begin, we implemented a simple baseline model that
uses two conv-relu layers on the individual frames with a
stride of 2, followed by averaging the output across all
frames and finishing with a fully connected layer to
compute scores for each class. We also updated it to
include batch normalization following each of the two relu
steps. Finally, we incorporated dropout in addition to
batch normalization, which ultimately yielded the best
performance. We also experimented with adding one or
two additional convolutional layers and a second affine
prediction layer, but surprisingly these more complex
architectures yielded lower validation scores.

2.2. Chunking

One of our attempts to capture some additional
temporal information from our videos was the idea from
[3] mentioned earlier, where we segment each video into
some number of chunks. Then, we treat each chunk as a
video to be classified. Finally, we combine the chunk-level
predictions into a single prediction for the whole video.
This is somewhat similar to our naive approach with the
simple model where we began with 10 frames from each
video, except that rather than averaging the network’s
outputs for each frame and then classifying, we actually
output a class prediction for each chunk. Then, we simply
treat each chunk’s classification as a single vote, and our
video-level prediction is the class with the most votes.

We put this technique in practice with the simple model
as follows: First, we looped all videos shorter than three
seconds so that each video would be at least three seconds
long. Then, we broke each video into ten chunks, and

extracted the first three frames from each chunk. We
classified each chunk based on its three frames using the
simple model with dropout and batch normalization,
averaging the three frames and outputting a prediction for
the chunk, then aggregated the 10 chunk scores and took
the most popular prediction as our output for the whole
video.

2.3 Three-Dimensional Convolutions

Our next attempt to capture temporal information from
our videos was the three-dimensional, or temporal,
convolution layer described in [1]. At a high level, the idea
follows quite naturally from two-dimensional, or spatial,
convolutions with which we have become intimately
familiar this quarter. We expand the idea to three
dimensions by stacking contiguous frames on top of each
other to form a three-dimensional tensor with dimensions
of width, height, and time, and then use three-dimensional
convolution filters, which slide along the spatial
dimensions of our input tensors. Dot products are
computed over the three-dimensional intersection between
the filter and the input tensor, rather than the two-
dimensional intersection that we’re used to for image
recognition.

We tried a simple architecture to see if it would be
worthwhile to pursue further. Our initial model featured
two layers of temporal convolutions. The first layer
featured 16 filters with spatial dimensions of 7x7 and a
temporal width of three, and the second layer featured an
additional 16 filters of spatial size 5x5 and again a
temporal width of three. After each layer, we used a ReLU
activation and then 2x2 maximum pooling along the
spatial dimensions. We then reshaped the output into a
vector and used an affine layer to make the final
classification prediction. For each video, we sampled
thirty frames (looping for the few videos under three
seconds) at even intervals. We also tried the model with
batch normalization, but it did not perform as well. This
model did not perform as well as the simple model
featuring two-dimensional convolutions, so we chose not
to pursue it much further.

2.4 Simple Recurrent Neural Network

We also attempted a simple version of a recurrent
neural network (LSTM) to see if preliminary results
looked fruitful. Recall that a recurrent neural network
maintains an internal hidden state and gets a new input at
each time step. It then computes a function of the hidden
state and the new input to produce an output vector and a
new hidden state. We thought a recurrent neural network
might be a logical choice for our problem because it can
take a variable number of frames as input, and thus we
could sample frames from each video at the same interval,

rather than evenly spaced, which we thought might be
more informative. We built our LSTM layer on top of our
simple two-layer architecture, passing each frame’s
encoding to the LSTM step by step rather than averaging
all of the frames together for a specific video.
Unfortunately, the results from our simple model were
substantially worse than for our simple model, so we
decided not to spend additional time fine-tuning it.

2.5 Pre-Trained Models

Next, we tried using pre-trained ImageNet models fine-
tuned on our video dataset. For our pre-trained model, we
chose to use Inception-Resnet-v2, described by Szegedy et
al. in 2016 [8], because it was the highest performing
ImageNet classification model we could find and had a
pretrained implementation readily available in
TensorFlow-Slim. Inception-Resnet-v2 combines the
Inception modules created 2015 by Szegedy et al. [9] that
utilize a Network in Network structure and increase the
expressivity of a network while constraining computing
requirements and the residual connections proposed by He
et al. [10] in Resnet that dramatically increase the depth
with which networks can be efficiently trained. This
model was used on individual frames, and the outputs
were either averaged across all frames or fed into an
LSTM before classification. We experimented with
allowing different amounts of layers to be fine-tuned in
this model because we expected that the lower levels of
the model detected features like edges and corners, which
would be the same in our dataset as in ImageNet. We tried
3 variations of this: one where the entire model could be
fine-tuned, one where only the top half could be fine-
tuned, and one where only the final 2 layers could be fine-
tuned.
 We also experimented with different methods of
incorporating the temporal information after using
Inception-Resnet-v2 on the individual frames. First, we
tried just using the first frame of the video to see if we
could obtain a high classification accuracy from the single
frame. Next, we tried a simple model that averaged the
output from 10 evenly spaced frames in the video before
feeding into a softmax classifier. Lastly, we tried feeding
the frame outputs into an LSTM. For this model, we
looked at the first 8 seconds of the video and fed a frame
from every half-second into the LSTM. Any videos
shorter than 8 seconds were zero-padded. We then used
the output of the final LSTM cell to feed into a softmax
classifier.

3. Results
Table 1: Validation Results of Different Models

As is shown in Table 1 above, the pretrained model

dramatically outperformed the models trained from
scratch. Among our models trained from scratch, the
chunking model performed the best, and the 3D
convolution. Overall, our best model by far was the
Inception-Resnet-v2 model averaged across frames, which
surprisingly outperformed the LSTM version.
Within the pretrained model, we experimented with
allowing different amounts of backpropagation into the
pretrained layers. As shown in Table 2 below, it
performed the best when allowing backpropagation
through all layers.

Table 2: Effect of allowing different amounts of
backpropagation in Inception-Resnet-v2 (trained only on
single frame of video)

 Finally we tested our best model, the Inception-Resnet-
v2 averaged across frames, on the test set and achieved a
test accuracy of 75.9% While this was a significant drop
from our validation accuracy of 84.3%, this drop was not
particularly surprising to us because the validation
accuracy was fluctuating significantly between epochs.

Furthermore, this is still a very impressive result
considering this is a 30-class problem with very noisy
data. Table 3 below shows our accuracies on each class.

Table 3: Accuracies by class

4. Analysis

We break up our analysis into several topics of interest.

4.1 Transfer Learning

It is not particularly surprising that the models that were
by far the most successful were those based on the pre-
trained Inception-Resnet network. Pre-trained models like
that one have already been trained on a huge dataset like
ImageNet to effectively detect edges, corners, and other
important attributes, and are thus able to output very
useful features. This model is also far more complex than
any of those we trained from scratch, so it is not an
entirely fair comparison. Nevertheless, the performance
difference was substantial.

Model Validation Accuracy

Simple Baseline 43.4%

Chunking 47.7%

3D Convolutions 41.7%

Inception-Resnet-v2, single
frame

72.3%

Inception-Resnet-v2,
averaged across frames

84.3%

Inception-Resnet-v2, LSTM 74.7%

Model Validation Results

Backpropagating through
entire model

72.3%

Backpropagating through
top half

71.0%

Backpropagating only
through 2 top layers

61.7%

Gymnastics 72% Golf 67%

Diving 75% Hurdling 71%

Tennis 71% Discus 78%

Longjump 100% BMX 86%

Pole Vault 91% Javelin 50%

Rowing 100% Hammer 64%

Skiing 71% Football 83%

Volleybal 98% Running 12%

Cheerleading 90% Highjump 85%

Baseball 88% Basketball 66%

Shot Put 77% Wrestling 82%

Swimming 100% Boxing 71%

Hockey 86% Socker 83%

Bowling 90% Skating 100%

Archery 90% Weightlifting 100%

 However, we were surprised that our best results came
when allowing full backpropagation. Since our dataset is
so small compared to the ImageNet dataset used for
pretraining, we expected that allowing full
backpropagation would lead to substantial overfitting.
Furthermore, the lower levels of the network theoretically
are mostly just detecting things like edges and corners,
which are the same in any dataset. However, full
backpropagation still performed the best. This suggests
that detecting sports requires different low-level features
than the categories in ImageNet. One possible explanation
is that the ImageNet classes are concerned mostly with the
foreground object, whereas with sports, the background is
much more important (i.e. a person running could mean
virtually any sport depending on what kind of field or
court they are on.)
 Another surprise to us was that the LSTM performed
significantly worse than the averaging model. This model
didn’t overfit as much on the training data, so we think it’s
possible that more hyperparameter tuning could have
improved the model. Since this model was extremely slow
to train (~1.5 hours per epoch), we weren’t able to
experiment as much as we would have liked with different
hyperparameters.

4.2 Overfitting

Our dataset is relatively small, and one thing we
struggled with throughout our experiments was the gap
between training and validation accuracy. All of the
models we trained from scratch tended to overfit our
training data after a few epochs. Introducing techniques
like batch normalization and dropout did tend to improve
validation accuracy, but the models incorporating those
ideas continued to overfit. We did not find a good solution
to mitigate this problem on our trained-from-scratch
models, though we did not try things like data
augmentation or training on additional labeled data to try
to narrow the gap in performance between training and
validation.

4.3 Temporal Convolutions

We were a bit disappointed by the performance of our
simple architectures featuring temporal convolutions,
since these models did not even perform as well as our
simple architectures featuring standard convolutional
layers. One possible issue we identified was that there was
a reasonably wide variety in source video length, which
meant that the thirty frames we sampled from each video
featured different-length gaps in between them. This
seems like it could certainly harm performance of three-
dimensional convolutional layers, because the stacks of
frames along temporal dimensions now span different
lengths of time, which might make it difficult for our

three-dimensional features to learn good, generalizable
weights. Perhaps a more effective approach would have
been to zero-pad shorter videos, or even to simple look all
of the short videos to a longer length, and then simply
attempt to classify a fixed-size chunk from each video,
such that the gaps between frames were equivalent for all
videos.

4.4 Feature Selection

We did a bit of experimentation with different features,
but our tests were certainly not comprehensive. In general,
our approach was to take some number of evenly spaced
frames from each video, most often between 10 and 30.
The biggest decision we made related to feature selection
was at the final prediction layer for our models. Initially,
we started by averaging the features derived from each
frame and then outputting a prediction for each video’s
averaged features, but we also tried other methods like
feeding each frame’s output features to an RNN or even
just concatenating them all into a single long vector.
Results were far from conclusive as to which method was
best, but in general the averaging method outperformed
the RNN-based methods we tried. We also had to crop our
frames, because various videos had different sizes. We
initially cropped each frame to 270x270, and later reduced
to 224x224 and even 200x200 for some models, due to
computational restraints. This cropping was likely unfair
to some videos, because larger videos had more
information discarded than smaller videos. We would have
liked to try zero-padding as a way to standardize video
size without this asymmetric discarding of information,
but at times it would have made our training quite slow.

5. Conclusions and Future Work

Given additional time and computational resources, there
is much more we could try in order to achieve optimal
performance on our dataset.

5.1 Conclusions

Our biggest takeaway from this project, without a
doubt, is that using a pre-trained model is definitely the
way to go. Not only did we not have to make complicated
architectural decisions ourselves, but we also reaped the
benefits of hours and hours of GPU training time where
the network already learned how to recognize informative
features. After a relatively quick fine-tuning on our actual
data set, we were able to nearly double the performance of
the simpler models we developed and trained from
scratch. There is a reason these models achieve state-of-
the-art performance: they’re really good. Our work shows
that they are not just good at their original ImageNet task,
either. They can easily be tweaked to classify different,

messy datasets as well. This lesson is broadly applicable to
any smaller dataset; when in doubt, try starting with a
good ImageNet model and see if transfer learning yields
good results. In our experience, it is likely to.
 Another observation we made was that in general, we
had more success with treating frames as still images to be
classified than by attempting to capture complex temporal
features. Intuitively, this makes some sense, because with
a few exceptions, a person can likely distinguish among all
of these sports pretty easily given a handful of frames.
That said, simple techniques like breaking videos into
chunks did appear to yield some performance gains,
suggesting that temporal information is still useful.
 Much like the results from [5], our models tended to
have much more trouble with certain classes. This
suggests that something about these classes is confusing or
complicated. In the case of running and long jump, for
instance, the sports look quite similar, especially when the
system only gets to see one frame at a time. This leads us
to believe that an approach like one-versus-all models for
these problematic classes combined in some sort of
ensemble might be a worthwhile addition to a real system
where our goal was to classify this dataset as accurately as
possible. Baseball, long jump, and running, for instance,
tended to have relatively low accuracies across models. If
we could find a model that did well on these three classes,
it would likely be a great addition to our system and
increase our overall accuracy by a few percentage points.
Sadly, we did not have a chance to experiment as much as
we would have liked in this regard.

5.2 Future Work

Many of our suggestions for future work are based on
issues raised in the conclusion section or earlier in the
paper. If we had more time, we would like to conduct
more experiments with different model architectures and
features. Our best results by far came from the pre-trained
ImageNet model architectures we tried, so it seems to
make the most sense to continue work on those models
initially, perhaps by exploring different features which
could be fed into the model. We would also be interested
in running additional experiments related to the layers we
built on top of the pre-trained model. So far, our most
successful prediction layer averaged the results of ten
input frames before making a prediction with an affine
layer, but this approach does not seem to fully capture the
temporal information available to us in videos. In fact, it
effectively treats the task as one of image classification,
rather than video classification. We would like to run more
experiments to try to find new and innovative ways to
capture additional temporal information, because
unfortunately the methods we did attempt did not work
particularly well.

 Our experiment with chunking the videos yielded gains
of a few percentage points with the simple model. This
suggests that perhaps a chunking approach paired with one
of the pre-trained models might yield small performance
gains as well, so we would be interested in trying that and
other techniques in conjunction with our best-performing
models to try to obtain peak performance.

References
[1] Ji, Shuiwang, et al. "3D convolutional neural networks for
human action recognition." IEEE transactions on pattern
analysis and machine intelligence 35.1 (2013): 221-231.

[2] Yue-Hei Ng, Joe, et al. "Beyond short snippets: Deep
networks for video classification." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015.

[3] Wang, Limin, et al. "Temporal segment networks: towards
good practices for deep action recognition." European
Conference on Computer Vision. Springer International
Publishing, 2016.

[4] Karpathy, Andrej, et al. “Large-scale video classification
with convolutional neural networks.” Proceedings of the IEEE
conference on computer vision and pattern recognition. 2014.

[5] Wu, Zuxuan et al. “Multi-Stream Multi-Class Fusion of
Deep Networks for Video Classification.” 2015

[6] Safdarnejad, Seyed Morteza, et al. "Sports videos in the
wild (SVW): A video dataset for sports analysis." Automatic
Face and Gesture Recognition (FG), 2015 11th IEEE
International Conference and Workshops on. Vol. 1. IEEE,
2015.

[7] Rachmadi, Reza Fuad, Keiichi Uchimura, and Gou Koutaki.
"Combined Convolutional Neural Network for Event
Recognition." Korea-Japan Joint Workshop on Frontiers of
Computer Vision. 2016.

[8] Szegedy, Christian et al. “Inception-v4, Inception-Resnet
and the Impact of Residual Connections on Learning.” 2016

[9] Szegedy, Christian et al. “Going Deeper with
Convolutions.” Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015.

[10] He, Kaiming et al. “Deep Residual Learning for Image
Recognition.” 2015.

