
 

Abstract 
 

This project aims at solving the multi-object tracking        
problem using a deep-learning approach. It builds a        
detection-based online tracker that has perfect object       
detection for each individual video frame and       
simultaneously has no access to any future frames, hence         
building the trajectory of the objects one frame at a time.           
It uses a KNN classifier as a baseline to compare other           
deep-learning models tried for tracking. Two different       
approaches were taken to tracking, one involving an        
LSTM trained over the bounding boxes of the objects over          
the consecutive frames of a video and the other involving a           
Siamese network trained on the VGG features of the crops          
of the objects of every consecutive frame in the video          
sequence. While the LSTM did not perform well, the         
Siamese network came close to matching KNN and had         
the potential for further improvement by adding some        
more complexity to the network. 

1. Introduction 
This project aims to solve the multi-object tracking        

problem assuming a perfect object detector. Traditionally       
object-detection is done using deep-learning approaches      
while tracking is done using more traditional geometrical        
and mathematical analysis. This project only picks the        
tracking problem and runs several deep-learning      
techniques to accurately track multiple objects in high        
resolution surveillance videos with static cameras. The       
intuition behind deep learning was to see if some         
non-linear models could learn the mathematical and  

 

geometrical approaches currently used without any      
domain knowledge or expertise. The applications for this        
problem span from simple ideas like security and        
surveillance to other commercial applications like      
inventory management, automated checkouts etc. 

1.1. Problem Statement 

Multi-object tracking is a multi-variable estimation      
problem where the following is given: 
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frames that object i exists in the video[1]. 

This project employs a detection based approach, that is         
assumes a separate detector provides the hypothesis for the         
objects in the image itself and that this detector works at           
100% accuracy. 

This project also uses online-tracking, that is for current         
time t, the input can only include frames and object          
observed up to t and not any future observations. This          
requires gradually extending the object trajectory contrary       
to an offline approach which would look at the entire          
video to propose the best trajectories across all frames         
combined. 
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1.2. Input/Output Definition 

The system takes in set of consecutive frames of a          
surveillance video along with all the objects detected in         
each frame described by the bounding box coordinates for         
each frame. 

The data is then preprocessed for the model that is          
being run and then the processed data is passed to one of            
the models (KNN, LSTM, Siamese) being run. 

The model outputs the confidence of how similar the         
objects are in consecutive frames and this is then run          
through a post-processor to assign the object an existing id          
suggesting it to continue tracking an old object or a new id            
suggesting the presence of a new object in the video. 

The final output is a file containing for each frame, all           
the objects in the frame with their bounding boxes and the           
id assigned to the object by the post-processing unit         
represented by unique colors. 

 
2. Related Works 

Several different approaches to Multiple Object      
Tracking have been employed. Most approaches can be        
categorized into two types: Detector Based Tracking       
(DBT) approaches and Detector Free Tracking (DFT)       
Approaches [2]. In DBT approaches, a detector is        
employed to get object hypothesis [3][4] and then a tracker          
is used to correlate objects across frames into trajectories.         
Most DBT approaches use a deep learning approach for         
their detectors before the performance of a DBT tracker is          
highly dependent on the tracker’s performance. DFT       
trackers are initialized with starting locations of objects        
which they track in subsequent frames [5]. For our         
problem, we focus our work on DBT approaches. 

Furthermore, tracking has a problem has been tackled in         
a sequential manner as well as in batch processing.         

Existing Sequential methods [6][7][8], also referred to as        
online algorithms, handle frames in a step by step method          
where only information up to the current frame can be          
used to track objects. On the other hand, methods which          
employ both past and future frame knowledge [9][10][11]        
are known as offline methods. For our problem, we study          
only online methods of tracking. 

Kalman Filter [12] and Kernel tracking algorithms like        
a mean shift tracker [13] are examples of DBT trackers          
which require object detection in each frame. However,        
they are not precise enough to handle very dense frames          
with multiple objects simultaneously. A lot of domain        
knowledge and expertise goes in building trackers on the         
results of object detection to handle challenges like object         
occlusion, interaction and overlap, illumination changes,      
sensor noise, etc. Multi-Hypothesis Tracking (MHT) [14]       
and Joint Probabilistic Data Association Filters (JPDAF)       
[15] are two representative methods of tracking objects.        
Recent papers make use of contextual models [16][17][18]        
to avoid losing track of the object. However, often times          
there is not enough training data for these models, and we           
often want to track objects for a variety of contexts.          
Another high performing models which use this approach        
of avoiding errors is of min-cost flow framework for         
global optimal data association [9]. We distinguish our        
work from the existing work that has been done by          
developing new deep learning trackers which do not        
require any prior domain knowledge or expertise of the         
environment. 
 
3. Methods 

The pipeline for a simple tracking system consists of a          
frame coming into the stream as an input. An object          
detector breaks the frame down to objects we wish to          
track. A tracker will then assign the objects to existing          
trajectories from previous frames, or tag the object as a          
newly detected object and start a fresh trajectory with it. 

We assume perfect object detection, and consider three        
different approaches to correlating objects across frames       
into trajectories: k-Nearest Neighbor, an LSTM based       
tracker, and a Siamese Network for Similarity Detection. 

3.1. k-Nearest Neighbours 

k-Nearest Neighbor takes in a list of objects detected in          
the current frame, and the last known location of objects          
being tracked as inputs. For every possible pair of current          
object location and previously detected object location, an        
Intersection over Union (IoU) score is calculated. 
 
3.1.1 Intersection over Union 

IoU, also known as, Jaccard index, is an evaluation         
metric which calculates the common area of two bounding         
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boxes, and divides it by the area of the union of the two. 
The current object is assigned to the trajectory with         

which it has the highest IoU score for the last known           
location of the object of that trajectory, unless, the IoU          
score with all trajectories is below a certain threshold. In          
that case, the object is tagged as a newly detected object,           
and a fresh trajectory is started with it. 

Figure 3: Computing the Intersection of Union is as simple as dividing 
the area of overlap between the bounding boxes by the area of union [19] 

 
3.2 LSTM based Tracking 
 

LSTM’s are a standard deep learning method for        
learning time dependencies in data. LSTM’s improve over        
RNNs by introducing four new gates, which control how         
much prior information is forgotten and retained. These        
gates make sure that the time dependencies are learnt over          
long periods of time as well, and are not forgotten. The           
update equations of the four gates of the LSTM are shown           
below. 

 
Figure 4: LSTM update equations (Source: CS224N) 

Figure 5: Smooth Trajectories of objects in the data 
 
We can model our sequence of frames as a time-series          

in which the object is moving through. The intuition         
behind using an LSTM is that with enough training data,          
the model should learn what a smooth trajectory of an          
object moving in a video over time looks like, and          
therefore, can be used to pairwise determine if a detected          
object can belong to a trajectory or not. If the detected           
object does not cross a predetermined threshold for all         
trajectories, it is considered a newly detected object and a          
fresh trajectory is started for it. 

The LSTM is initialized with the the past known         
bounding box coordinates of a particular trajectory in        
sequential order. The bounding box coordinate of the        
current box is given to the LSTM and the output of the            
LSTM is fed through a sigmoid classifier to see if the           
current bounding box will belong to the specified        
trajectory or not. This operation is done over all pairs of           
previous tracked trajectories and detected objects in the        
current frame, to either assign the object to a previous          
trajectory or classify it as a new object being tracked.  
 
3.3 Siamese Network for similarity of objects 

Various trackers use similarity measures such as       
chi-square and nearest neighbor on the blobs shown by the          
object detector [21]. We propose pairwise running the        
objects in the previous frames and the objects detected in          
the current frame through a siamese network with a         
sigmoid classifier on top which learns a similarity measure         
for blobs which represent the same person through        
multiple frames and distinguishing between different      
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people across frames. 
 
3.3.1 Transfer Learning 
 

The bounding boxes around an object specify a crop of          
an image which is resized and passed to a CNN network.           
We use the VGG architecture [22] for the CNN network to           
learn the representations of the image. However, since we         
do not have enough data to properly train such a deep           
network architecture for learning representations, we      
initialize the VGG network with weights trained on the         
Imagenet dataset [23], which are further fine tuned by         
training on the MOTC dataset.. This process is known as          
transfer-learning [24]. Transfer learning helps in      
improving the performance in a new task by transferring         
the knowledge it has learnt in performing a similar task. In           
our case, the VGG network had learnt to extract features          
or representations from an image on the imagenet dataset,         
on top of which a softmax classifier operated. In our          
problem domain, the VGG network will learn the image         
representations on the bounding box crops of people, and a          
sigmoid classifier will output if two of these        
representations belong to the same person or not. The         
network architecture of the full siamese network is shown         
below. 
 

 
 

Figure 6: Siamese network architecture 
 
4. Data & Features 

The Multi-Object Tracking Benchmark 2016 [20]      
dataset was used for this project. The dataset details are as           

follows: 
● 7 Training Videos 
● 7 Test Videos 
● Total Training Frames: 3579 
● Total Testing Frames: 4725 

 
This is a high density dataset with very high overlap.          

Almost all videos are very high resolution (1920x1080)        
and are mostly recorded at 30 frames per second. 

In this dataset, each video is provided as a set of images            
where each image represents a specific frame of the video          
sequence. With that it provides a ground truth (GT) file in           
the form of a csv with the following columns: 

● Frame Number 
● Object Id 
● Left Coordinate of Bounding Box 
● Top Coordinate of Bounding Box 
● Width of Bounding Box 
● Height of Bounding Box 
● Confidence Score (a flag in case of GT file) 
● Class (Type of object) 
● Visibility ratio 

Only 6 videos were used for training and 6 for testing as            
one of them had non-static cameras. Different models        
required different forms of feature extraction and       
pre-processions. 

Image crop resizing was done in some cases which         
required the extraction of each object from the frame and          
resizing it to a fixed size while retaining all the three           
layers. This could then be run through a feature extractor          
like VGG. Objects were matched across frames using an         
IOU technique where every object outputted by the model         
was correlated to the ground truth by finding exact/closes         
matches with the bounding boxes and ensuring the object         
assigned by the model over consecutive frame was the         
same. 

 
5. Experiments 

We had 6 training files and 7 testing files available to           
us. We used 5 of the 6 training files for training, and the             
6th for validation purposes. 
 
5.1 k-Nearest Neighbor 

 
The kNN algorithm simply remembered the data it was         

fed in, and used it to classify subsequent objects detected          
in the future. There was no explicit “training” phase of the           
algorithm. We used the validation file to tune our         
threshold parameter, i.e. at which threshold should we        
assign an object to an existing trajectory vs. tagging it as a            
new object. 
 
5.1.1 Threshold Parameter 
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Threshold values were searched in the space of 0.0 to          

1.0 in intervals of 0.1. A finer search was conducted          
between the interval which minimized the switch rate on         
the validation file. 
 
5.2 LSTM based Tracking 
 

The LSTM network was passed in bounding boxes of         
the object in multiple frames as time-series. Positive        
examples were constructed by taking bounding boxes of        
an object from successive frames upto length t, where         
optimal length t was decided by validation on the 6th file.           
Negative examples were similarly constructed, however      
the bounding box of the last frame belonged to a different           
object than those of the first t -1 frames.  

Adam optimizer was used to train the model. Validation         
on the dev file was conducted to find the optimal hidden           
size of the LSTM cell. 5 values for the LSTM size were            
searched: 32, 64, 128, 256, 512, with the one with the least            
switching rate on the dev set chosen for the final model. A            
threshold on the confidence score to distinguish between        
new objects and existing objects was determined in the         
same manner as for kNN described above. 

Experiments on synthetic data to see if the network was          
learning simple trajectories were also conducted. Their       
results are discussed in the section below. 
 
5.3 Siamese Network for similarity of objects 
 

In training the siamese network, the objects from each         
image frame were extracted and reshaped to size 224 by          
224. Training batches were created by taking same objects         
from consecutive frames and negative examples by taking        
different objects from consecutive frames. Since, the       
number of negative examples was roughly 50 times higher         
than positive examples, the negative examples were       
downsampled to create a 1:9 ratio of positive to negative          
examples for better training. The weights of the VGG         
model were initialized by training on the Imagenet dataset         
and were shared across the two parallel layers of the          
siamese network. Adam optimizer was used to train the         
network, with a decaying learning rate. The threshold for         
the confidence score for distinguishing between a new        
object and an existing one were chosen the same way as in            
the case of the kNN algorithm described above.  
 
6. Results/Discussion 

6.1. Error Evaluation Metrics 

Three different error metrics are conventionally used to        
evaluate multi-object tracking systems 

6.1.1 ID Switches 

The ID switches metric counts the number of times the          
id for a single object switches across all its frames of           
existence. This describes how many times the system        
misses an object by tagging it by a new id or simply an             
incorrect one. 

● For all objects O , , .., }O = { 1 O1 . Om  
● Each object , that is all the  o , , }Ox = { i

x ox
i+1 ..., oj

x      
frames i through j, the object exists for 

● where is the object id of object x at frame tot
x  

Then: 

D Switches I =  
(y)∑

m

y=1
t

(o  = o )∑
m

x=1
∑

t(x)−1

i=1
1 i

x / x
i+1

[25] 

 
Here, ID Switches is the weighted average for the ID          

switches across each object, where the ID switches of each          
object is defined as the number of switches in the id of a             
given object divided by the number of frames, the object          
was existing in the entire video sequence. This simplifies         
to the above formula where m is the total number of true            
objects and t(m) represents the number of frames the         
object existed for in the given video sequence. 

6.1.2 Multi-Object Tracking Accuracy (MOTA) 

The Multi-Object tracking accuracy is a standard metric        
used to account for all the object configuration errors. It          
combines the false positive, misses and mismatch rates        
over all the frames. 

For this system, since their is a perfect detector, the          
false positives and misses are all zero as the detector give           
exactly the same number of object hypothesis as the         
ground truth. 

Mismatch rate is defined as follows: 

[25]ismatch Rate           M = 1 −  
(y)∑

m

y=1
t

ax  1(o =id) ∑
m

x=1
m ( ∑

ids(x)

id
 ∑

t(x)

i=1
 i

x )
 

 
Here, mismatch rate is the weighted for the mismatch         

rate of each object, where the mismatch rate of each object           
is defined as one minus the mismatch accuracy. Mismatch         
accuracy is the ratio of the largest number of frames the           
object was given the same id over the total frames the           
object existed for in the video sequence. 

6.1.3 Robustness 

Robustness is defined as the ability of the system to          
handle occlusion. Since this system only compared object        
pairs and hence was incapable of handling occlusion. 
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6.2. Result/Discussion 

6.2.1 K-Nearest Neighbours 

This was suppose to be the base case to see how a            
simple classier would perform on a dense dataset. It did          
really well, with the following results. 

 
Table 1. KNN Results 

 ID Switches MOTA 

Training 0.03 0.78 

Testing 0.03 0.78 

 
Plotting the outputs into the frames showed the        

classifier work very well because of the extremely high         
overlap between objects in consecutive frames. The       
perform did deteriorate when run on every 6th frame of          
the video (to match realistic real time object detection         
speeds). Moreover, the mismatches that did occur where        
mostly when two individuals walking in opposite       
directions cross paths. The classifier could not figure out if          
they were same, new objects and either assigned new ids          
or switched their ids. 

This made sense, as the KNN only worked only on the           
bounding box coordinates of two consecutive and had no         
knowledge of the trajectory or the contents of the object in           
consideration. 

6.2.2 LSTM 

The LSTM was run with a sliding window of 10 frames           
at a time, however it performed really poorly with the          
results as follows: 

 
Table 2. LSTM Results 

 ID Switches MOTA 

Training 0.51 0.27 

Testing 0.57 0.22 

 
Even though the models training accuracy was fairly        

high (around 98%), it never seemed to learn anything as it           
mispredicted both the training and test examples when run         
through the entire pipeline. The high training accuracy for         
the model was due to class imbalance in the favor of           
negative results in the training dataset. Downsampling the        
number of negative examples did not help improve the         
final performance of the model. 

Figure 7:Synthetic Data Experiment 
 
We ran some experiments on synthetic data to see if the           

network was able to learn simple trajectories. We        
initialized the LSTM with an object moving in a straight          
line for 9 consecutive frames (shown in the blue line in           
Figure 7). Scores were checked for two possible future         
objects: one in a straight line (Orange Dot), and a random           
point (Green dot). Intuitively, the orange dot should        
belong to the blue trajectory and therefore, its score should          
be much higher. However, the network predicted very        
similar low scores for both these points and hence, would          
initialize both these points as new objects being tagged. 

The reason for the poor performance is not very clear,          
but training on the image crop or VGG features of the crop            
might have performed better and would be something        
worth testing [25]. 

6.2.3 Siamese Network 

The Siamese was run with every consecutive frame in         
the video sequence and had the following results: 

 
Table 3.Siamese Network Results 

 ID Switches MOTA 

Training 0.11 0.81 

Testing 0.15 0.76 

               (a)                                     (b)                                   (c) 
Figure 8: Crop of object at Frames 1, 40 and 80 resized to 224x224x3 
 
The accuracy was very similar to that of a KNN,          
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however the reason for the accuracy was very different.         
Unlike the KNN, Siamese looked at the actual image and          
its VGG features instead of the bounding box coordinates.         
This made it look for similarity and overlap in the image           
crop. Hence, it found images Figure 5.b and Figure 5.c to           
be similar with a very high confidence, but failed to          
recognize Figure 8.a since it was occluded by a different          
object. 

Moreover, considering the time complexity of      
extracting each crop of each object in a frame, resizing and           
running it through a VGG network even before running         
through the actual Siamese network, makes this algorithm        
extremely slow and not feasible for any real time         
environments. 

 
7. Conclusion 

Tracking with deep-learning is still a relatively new        
problem and even though a simple KNN classifier        
achieved fairly good results, it has a lot of scope for           
improvement. This is because even the fastest object        
detectors operate at a speed of 5 frames per second [26].           
Hence, in real time, you can run your tracking algorithm          
only on every 6th frame, instead of on every frame. And           
while kNNs high pixel overlap in consecutive frames        
makes it perform really well, the performance drops        
significantly when it is run every 6th frame. This is where           
deep learning models can outperform simple geometric       
algorithms. Siamese networks do not show significant       
drop in accuracy when they are run every 6th frame to           
track objects, because they are based on matching similar         
objects.  

The failure of the LSTM was quite unexpected and         
needs deeper analysis before eliminating it as a viable         
option for tracking. Siamese networks came close to KNN         
with a very simple yet computationally expensive pipeline        
and would have the potential to solve this problem in a           
real world setting. 
 
 
8. Future Work 

Tracking with deep-learning is a challenging problem       
with lot more scope for experimentation. We plan to try          
the following in the near future 

A deeper analysis needs to be performed on the LSTM          
to understand the reasons for its poor performance.        
Additionally, increase the complexity of the model by        
passing it both the bounding box coordinates as well as the           
object crop features to make the network learn both the          
image content as well as the position and velocity over          
time. 

Siamese network performed well with just two parallel        
pipelines looking at consecutive frames. We think it might         
do much better with a 5-10 parallel pipelines looking at a           

window of previous frames. This will be something to try          
in the future. 

Another challenge would be to predict the future        
bounding box instead of the current approach of matching         
detected object to previously known objects. Not only will         
this help handle object occlusion but potentially allow the         
system to run with a detection-free-system where the        
detection does not have to happen every frame. 

The overall robustness of the system also needs to be          
tested in the future by connecting a real object detector to           
see how the errors from the detector compound onto the          
predictions made by the tracker. 

We also plan to create a better visualization pipeline to          
have better demos as well as increase our own         
understanding of the models behaviour. 
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