

Abstract

This project aims at solving the multi-object tracking
problem using a deep-learning approach. It builds a
detection-based online tracker that has perfect object
detection for each individual video frame and
simultaneously has no access to any future frames, hence
building the trajectory of the objects one frame at a time.
It uses a KNN classifier as a baseline to compare other
deep-learning models tried for tracking. Two different
approaches were taken to tracking, one involving an
LSTM trained over the bounding boxes of the objects over
the consecutive frames of a video and the other involving a
Siamese network trained on the VGG features of the crops
of the objects of every consecutive frame in the video
sequence. While the LSTM did not perform well, the
Siamese network came close to matching KNN and had
the potential for further improvement by adding some
more complexity to the network.

1. Introduction
This project aims to solve the multi-object tracking

problem assuming a perfect object detector. Traditionally
object-detection is done using deep-learning approaches
while tracking is done using more traditional geometrical
and mathematical analysis. This project only picks the
tracking problem and runs several deep-learning
techniques to accurately track multiple objects in high
resolution surveillance videos with static cameras. The
intuition behind deep learning was to see if some
non-linear models could learn the mathematical and

geometrical approaches currently used without any
domain knowledge or expertise. The applications for this
problem span from simple ideas like security and
surveillance to other commercial applications like
inventory management, automated checkouts etc.

1.1. Problem Statement

Multi-object tracking is a multi-variable estimation
problem where the following is given:

● Sequence of frames S , , .., }S1:t = { 1 S2 . St
● Each frame s , , .., }Sx = { 1

x s2
x . sx

m
● represents object y in frame x represented by asy

x
bounding box coordinates in the frame

The objective of a multi-tracking is to produce

, that is the sequence ofs , , .., , }si
i :is e

= { i
is

si
i +1s

. si
i −1e

si
ie

frames that object i exists in the video[1].

This project employs a detection based approach, that is
assumes a separate detector provides the hypothesis for the
objects in the image itself and that this detector works at
100% accuracy.

This project also uses online-tracking, that is for current
time t, the input can only include frames and object
observed up to t and not any future observations. This
requires gradually extending the object trajectory contrary
to an offline approach which would look at the entire
video to propose the best trajectories across all frames
combined.

1

1.2. Input/Output Definition

The system takes in set of consecutive frames of a
surveillance video along with all the objects detected in
each frame described by the bounding box coordinates for
each frame.

The data is then preprocessed for the model that is
being run and then the processed data is passed to one of
the models (KNN, LSTM, Siamese) being run.

The model outputs the confidence of how similar the
objects are in consecutive frames and this is then run
through a post-processor to assign the object an existing id
suggesting it to continue tracking an old object or a new id
suggesting the presence of a new object in the video.

The final output is a file containing for each frame, all
the objects in the frame with their bounding boxes and the
id assigned to the object by the post-processing unit
represented by unique colors.

2. Related Works

Several different approaches to Multiple Object
Tracking have been employed. Most approaches can be
categorized into two types: Detector Based Tracking
(DBT) approaches and Detector Free Tracking (DFT)
Approaches [2]. In DBT approaches, a detector is
employed to get object hypothesis [3][4] and then a tracker
is used to correlate objects across frames into trajectories.
Most DBT approaches use a deep learning approach for
their detectors before the performance of a DBT tracker is
highly dependent on the tracker’s performance. DFT
trackers are initialized with starting locations of objects
which they track in subsequent frames [5]. For our
problem, we focus our work on DBT approaches.

Furthermore, tracking has a problem has been tackled in
a sequential manner as well as in batch processing.

Existing Sequential methods [6][7][8], also referred to as
online algorithms, handle frames in a step by step method
where only information up to the current frame can be
used to track objects. On the other hand, methods which
employ both past and future frame knowledge [9][10][11]
are known as offline methods. For our problem, we study
only online methods of tracking.

Kalman Filter [12] and Kernel tracking algorithms like
a mean shift tracker [13] are examples of DBT trackers
which require object detection in each frame. However,
they are not precise enough to handle very dense frames
with multiple objects simultaneously. A lot of domain
knowledge and expertise goes in building trackers on the
results of object detection to handle challenges like object
occlusion, interaction and overlap, illumination changes,
sensor noise, etc. Multi-Hypothesis Tracking (MHT) [14]
and Joint Probabilistic Data Association Filters (JPDAF)
[15] are two representative methods of tracking objects.
Recent papers make use of contextual models [16][17][18]
to avoid losing track of the object. However, often times
there is not enough training data for these models, and we
often want to track objects for a variety of contexts.
Another high performing models which use this approach
of avoiding errors is of min-cost flow framework for
global optimal data association [9]. We distinguish our
work from the existing work that has been done by
developing new deep learning trackers which do not
require any prior domain knowledge or expertise of the
environment.

3. Methods

The pipeline for a simple tracking system consists of a
frame coming into the stream as an input. An object
detector breaks the frame down to objects we wish to
track. A tracker will then assign the objects to existing
trajectories from previous frames, or tag the object as a
newly detected object and start a fresh trajectory with it.

We assume perfect object detection, and consider three
different approaches to correlating objects across frames
into trajectories: k-Nearest Neighbor, an LSTM based
tracker, and a Siamese Network for Similarity Detection.

3.1. k-Nearest Neighbours

k-Nearest Neighbor takes in a list of objects detected in
the current frame, and the last known location of objects
being tracked as inputs. For every possible pair of current
object location and previously detected object location, an
Intersection over Union (IoU) score is calculated.

3.1.1 Intersection over Union

IoU, also known as, Jaccard index, is an evaluation
metric which calculates the common area of two bounding

2

boxes, and divides it by the area of the union of the two.
The current object is assigned to the trajectory with

which it has the highest IoU score for the last known
location of the object of that trajectory, unless, the IoU
score with all trajectories is below a certain threshold. In
that case, the object is tagged as a newly detected object,
and a fresh trajectory is started with it.

Figure 3: Computing the Intersection of Union is as simple as dividing
the area of overlap between the bounding boxes by the area of union [19]

3.2 LSTM based Tracking

LSTM’s are a standard deep learning method for
learning time dependencies in data. LSTM’s improve over
RNNs by introducing four new gates, which control how
much prior information is forgotten and retained. These
gates make sure that the time dependencies are learnt over
long periods of time as well, and are not forgotten. The
update equations of the four gates of the LSTM are shown
below.

Figure 4: LSTM update equations (Source: CS224N)

Figure 5: Smooth Trajectories of objects in the data

We can model our sequence of frames as a time-series

in which the object is moving through. The intuition
behind using an LSTM is that with enough training data,
the model should learn what a smooth trajectory of an
object moving in a video over time looks like, and
therefore, can be used to pairwise determine if a detected
object can belong to a trajectory or not. If the detected
object does not cross a predetermined threshold for all
trajectories, it is considered a newly detected object and a
fresh trajectory is started for it.

The LSTM is initialized with the the past known
bounding box coordinates of a particular trajectory in
sequential order. The bounding box coordinate of the
current box is given to the LSTM and the output of the
LSTM is fed through a sigmoid classifier to see if the
current bounding box will belong to the specified
trajectory or not. This operation is done over all pairs of
previous tracked trajectories and detected objects in the
current frame, to either assign the object to a previous
trajectory or classify it as a new object being tracked.

3.3 Siamese Network for similarity of objects

Various trackers use similarity measures such as
chi-square and nearest neighbor on the blobs shown by the
object detector [21]. We propose pairwise running the
objects in the previous frames and the objects detected in
the current frame through a siamese network with a
sigmoid classifier on top which learns a similarity measure
for blobs which represent the same person through
multiple frames and distinguishing between different

3

people across frames.

3.3.1 Transfer Learning

The bounding boxes around an object specify a crop of
an image which is resized and passed to a CNN network.
We use the VGG architecture [22] for the CNN network to
learn the representations of the image. However, since we
do not have enough data to properly train such a deep
network architecture for learning representations, we
initialize the VGG network with weights trained on the
Imagenet dataset [23], which are further fine tuned by
training on the MOTC dataset.. This process is known as
transfer-learning [24]. Transfer learning helps in
improving the performance in a new task by transferring
the knowledge it has learnt in performing a similar task. In
our case, the VGG network had learnt to extract features
or representations from an image on the imagenet dataset,
on top of which a softmax classifier operated. In our
problem domain, the VGG network will learn the image
representations on the bounding box crops of people, and a
sigmoid classifier will output if two of these
representations belong to the same person or not. The
network architecture of the full siamese network is shown
below.

Figure 6: Siamese network architecture

4. Data & Features

The Multi-Object Tracking Benchmark 2016 [20]
dataset was used for this project. The dataset details are as

follows:
● 7 Training Videos
● 7 Test Videos
● Total Training Frames: 3579
● Total Testing Frames: 4725

This is a high density dataset with very high overlap.

Almost all videos are very high resolution (1920x1080)
and are mostly recorded at 30 frames per second.

In this dataset, each video is provided as a set of images
where each image represents a specific frame of the video
sequence. With that it provides a ground truth (GT) file in
the form of a csv with the following columns:

● Frame Number
● Object Id
● Left Coordinate of Bounding Box
● Top Coordinate of Bounding Box
● Width of Bounding Box
● Height of Bounding Box
● Confidence Score (a flag in case of GT file)
● Class (Type of object)
● Visibility ratio

Only 6 videos were used for training and 6 for testing as
one of them had non-static cameras. Different models
required different forms of feature extraction and
pre-processions.

Image crop resizing was done in some cases which
required the extraction of each object from the frame and
resizing it to a fixed size while retaining all the three
layers. This could then be run through a feature extractor
like VGG. Objects were matched across frames using an
IOU technique where every object outputted by the model
was correlated to the ground truth by finding exact/closes
matches with the bounding boxes and ensuring the object
assigned by the model over consecutive frame was the
same.

5. Experiments

We had 6 training files and 7 testing files available to
us. We used 5 of the 6 training files for training, and the
6th for validation purposes.

5.1 k-Nearest Neighbor

The kNN algorithm simply remembered the data it was

fed in, and used it to classify subsequent objects detected
in the future. There was no explicit “training” phase of the
algorithm. We used the validation file to tune our
threshold parameter, i.e. at which threshold should we
assign an object to an existing trajectory vs. tagging it as a
new object.

5.1.1 Threshold Parameter

4

Threshold values were searched in the space of 0.0 to

1.0 in intervals of 0.1. A finer search was conducted
between the interval which minimized the switch rate on
the validation file.

5.2 LSTM based Tracking

The LSTM network was passed in bounding boxes of
the object in multiple frames as time-series. Positive
examples were constructed by taking bounding boxes of
an object from successive frames upto length t, where
optimal length t was decided by validation on the 6th file.
Negative examples were similarly constructed, however
the bounding box of the last frame belonged to a different
object than those of the first t -1 frames.

Adam optimizer was used to train the model. Validation
on the dev file was conducted to find the optimal hidden
size of the LSTM cell. 5 values for the LSTM size were
searched: 32, 64, 128, 256, 512, with the one with the least
switching rate on the dev set chosen for the final model. A
threshold on the confidence score to distinguish between
new objects and existing objects was determined in the
same manner as for kNN described above.

Experiments on synthetic data to see if the network was
learning simple trajectories were also conducted. Their
results are discussed in the section below.

5.3 Siamese Network for similarity of objects

In training the siamese network, the objects from each
image frame were extracted and reshaped to size 224 by
224. Training batches were created by taking same objects
from consecutive frames and negative examples by taking
different objects from consecutive frames. Since, the
number of negative examples was roughly 50 times higher
than positive examples, the negative examples were
downsampled to create a 1:9 ratio of positive to negative
examples for better training. The weights of the VGG
model were initialized by training on the Imagenet dataset
and were shared across the two parallel layers of the
siamese network. Adam optimizer was used to train the
network, with a decaying learning rate. The threshold for
the confidence score for distinguishing between a new
object and an existing one were chosen the same way as in
the case of the kNN algorithm described above.

6. Results/Discussion

6.1. Error Evaluation Metrics

Three different error metrics are conventionally used to
evaluate multi-object tracking systems

6.1.1 ID Switches

The ID switches metric counts the number of times the
id for a single object switches across all its frames of
existence. This describes how many times the system
misses an object by tagging it by a new id or simply an
incorrect one.

● For all objects O , , .., }O = { 1 O1 . Om
● Each object , that is all the o , , }Ox = { i

x ox
i+1 ..., oj

x
frames i through j, the object exists for

● where is the object id of object x at frame tot
x

Then:

D Switches I =
(y)∑

m

y=1
t

(o = o)∑
m

x=1
∑

t(x)−1

i=1
1 i

x / x
i+1

[25]

Here, ID Switches is the weighted average for the ID

switches across each object, where the ID switches of each
object is defined as the number of switches in the id of a
given object divided by the number of frames, the object
was existing in the entire video sequence. This simplifies
to the above formula where m is the total number of true
objects and t(m) represents the number of frames the
object existed for in the given video sequence.

6.1.2 Multi-Object Tracking Accuracy (MOTA)

The Multi-Object tracking accuracy is a standard metric
used to account for all the object configuration errors. It
combines the false positive, misses and mismatch rates
over all the frames.

For this system, since their is a perfect detector, the
false positives and misses are all zero as the detector give
exactly the same number of object hypothesis as the
ground truth.

Mismatch rate is defined as follows:

[25]ismatch Rate M = 1 −
(y)∑

m

y=1
t

ax 1(o =id) ∑
m

x=1
m (∑

ids(x)

id
 ∑

t(x)

i=1
 i

x)

Here, mismatch rate is the weighted for the mismatch

rate of each object, where the mismatch rate of each object
is defined as one minus the mismatch accuracy. Mismatch
accuracy is the ratio of the largest number of frames the
object was given the same id over the total frames the
object existed for in the video sequence.

6.1.3 Robustness

Robustness is defined as the ability of the system to
handle occlusion. Since this system only compared object
pairs and hence was incapable of handling occlusion.

5

6.2. Result/Discussion

6.2.1 K-Nearest Neighbours

This was suppose to be the base case to see how a
simple classier would perform on a dense dataset. It did
really well, with the following results.

Table 1. KNN Results

 ID Switches MOTA

Training 0.03 0.78

Testing 0.03 0.78

Plotting the outputs into the frames showed the

classifier work very well because of the extremely high
overlap between objects in consecutive frames. The
perform did deteriorate when run on every 6th frame of
the video (to match realistic real time object detection
speeds). Moreover, the mismatches that did occur where
mostly when two individuals walking in opposite
directions cross paths. The classifier could not figure out if
they were same, new objects and either assigned new ids
or switched their ids.

This made sense, as the KNN only worked only on the
bounding box coordinates of two consecutive and had no
knowledge of the trajectory or the contents of the object in
consideration.

6.2.2 LSTM

The LSTM was run with a sliding window of 10 frames
at a time, however it performed really poorly with the
results as follows:

Table 2. LSTM Results

 ID Switches MOTA

Training 0.51 0.27

Testing 0.57 0.22

Even though the models training accuracy was fairly

high (around 98%), it never seemed to learn anything as it
mispredicted both the training and test examples when run
through the entire pipeline. The high training accuracy for
the model was due to class imbalance in the favor of
negative results in the training dataset. Downsampling the
number of negative examples did not help improve the
final performance of the model.

Figure 7:Synthetic Data Experiment

We ran some experiments on synthetic data to see if the

network was able to learn simple trajectories. We
initialized the LSTM with an object moving in a straight
line for 9 consecutive frames (shown in the blue line in
Figure 7). Scores were checked for two possible future
objects: one in a straight line (Orange Dot), and a random
point (Green dot). Intuitively, the orange dot should
belong to the blue trajectory and therefore, its score should
be much higher. However, the network predicted very
similar low scores for both these points and hence, would
initialize both these points as new objects being tagged.

The reason for the poor performance is not very clear,
but training on the image crop or VGG features of the crop
might have performed better and would be something
worth testing [25].

6.2.3 Siamese Network

The Siamese was run with every consecutive frame in
the video sequence and had the following results:

Table 3.Siamese Network Results

 ID Switches MOTA

Training 0.11 0.81

Testing 0.15 0.76

 (a) (b) (c)
Figure 8: Crop of object at Frames 1, 40 and 80 resized to 224x224x3

The accuracy was very similar to that of a KNN,

6

however the reason for the accuracy was very different.
Unlike the KNN, Siamese looked at the actual image and
its VGG features instead of the bounding box coordinates.
This made it look for similarity and overlap in the image
crop. Hence, it found images Figure 5.b and Figure 5.c to
be similar with a very high confidence, but failed to
recognize Figure 8.a since it was occluded by a different
object.

Moreover, considering the time complexity of
extracting each crop of each object in a frame, resizing and
running it through a VGG network even before running
through the actual Siamese network, makes this algorithm
extremely slow and not feasible for any real time
environments.

7. Conclusion

Tracking with deep-learning is still a relatively new
problem and even though a simple KNN classifier
achieved fairly good results, it has a lot of scope for
improvement. This is because even the fastest object
detectors operate at a speed of 5 frames per second [26].
Hence, in real time, you can run your tracking algorithm
only on every 6th frame, instead of on every frame. And
while kNNs high pixel overlap in consecutive frames
makes it perform really well, the performance drops
significantly when it is run every 6th frame. This is where
deep learning models can outperform simple geometric
algorithms. Siamese networks do not show significant
drop in accuracy when they are run every 6th frame to
track objects, because they are based on matching similar
objects.

The failure of the LSTM was quite unexpected and
needs deeper analysis before eliminating it as a viable
option for tracking. Siamese networks came close to KNN
with a very simple yet computationally expensive pipeline
and would have the potential to solve this problem in a
real world setting.

8. Future Work

Tracking with deep-learning is a challenging problem
with lot more scope for experimentation. We plan to try
the following in the near future

A deeper analysis needs to be performed on the LSTM
to understand the reasons for its poor performance.
Additionally, increase the complexity of the model by
passing it both the bounding box coordinates as well as the
object crop features to make the network learn both the
image content as well as the position and velocity over
time.

Siamese network performed well with just two parallel
pipelines looking at consecutive frames. We think it might
do much better with a 5-10 parallel pipelines looking at a

window of previous frames. This will be something to try
in the future.

Another challenge would be to predict the future
bounding box instead of the current approach of matching
detected object to previously known objects. Not only will
this help handle object occlusion but potentially allow the
system to run with a detection-free-system where the
detection does not have to happen every frame.

The overall robustness of the system also needs to be
tested in the future by connecting a real object detector to
see how the errors from the detector compound onto the
predictions made by the tracker.

We also plan to create a better visualization pipeline to
have better demos as well as increase our own
understanding of the models behaviour.

9. References
[1] B. Yang, C. Huang, and R. Nevatia, “Learning affinities and

dependencies for multi-target tracking using a CRF model,”
in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., 2011,
pp. 1233–1240.

[2] B. Yang and R. Nevatia, “Online learned discriminative
partbased appearance models for multi-human tracking,” in
Proc. Eur. Conf. Comput. Vis., 2012, pp. 484–498.

[3] B. Bose, X. Wang, and E. Grimson, “Multi-class object
tracking algorithm that handles fragmentation and
grouping,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2007, pp. 1–8.

[4] B. Song, T.-Y. Jeng, E. Staudt, and A. K. Roy-Chowdhury,
“A stochastic graph evolution framework for robust
multi-target tracking,” in Proc. Eur. Conf. Comput. Vis.,
2010, pp. 605–619

[5] M. Yang, T. Yu, and Y. Wu, “Game-theoretic multiple
target tracking,” in Proc. IEEE Int. Conf. Comput. Vis.,
2007, pp. 1–8.

[6] W. Hu, X. Li, W. Luo, X. Zhang, S. Maybank, and Z.
Zhang, “Single and multiple object tracking using
log-euclidean riemannian subspace and block-division
appearance model,” IEEE Trans. Pattern Anal. Mach. Intel.,
vol. 34, no. 12, pp. 2420–2440, Dec. 2012

[7] L. Zhang and L. van der Maaten, “Structure preserving
object tracking,” in Proc. IEEE Comp

[8] J. Zhang, L. L. Presti, and S. Sclaroff, “Online multi-person
tracking by tracker hierarchy,” in Proc. IEEE Int. Conf.
Advanced Video Signal-Based Surveillance, 2012, pp.
379–385.

[9] D. Sugimura, K. M. Kitani, T. Okabe, Y. Sato, and A.
Sugimoto, “Using individuality to track individuals:
Clustering individual trajectories in crowds using local
appearance and frequency trait,” in Proc. IEEE Int. Conf.
Comput. Vis., 2009, pp. 1467–1474.

[10] C.-H. Kuo, C. Huang, and R. Nevatia, “Multi-target
tracking by on-line learned discriminative appearance
models,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2010, pp. 685– 692.

[11] J. F. Henriques, R. Caseiro, and J. Batista, “Globally

7

optimal solution to multi-object tracking with merged
measurements,” in Proc. IEEE Int. Conf. Comput. Vis.,
2011, pp. 2470–2477.

[12] Isard, M., Blake, A.: Condensation - Conditional Density
Propagation for Visual Tracking. International Journal of
Computer Vision (1998)

[13] Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based Object
Tracking. IEEE Trans. on Pattern Analysis and Machine
Intelligence (May 2003)

[14] Reid, D.: An Algorithm for Tracking Multiple Targets.
IEEE Trans. Automatic Control 24(6), 843–854 (1979)

[15] Bar-Shalom, Y., Fortmann, T.: Tracking and Data
Association. Academic Press, London (1988)

[16] Babenko, B., Yang, M., Belongie, S.: Visual Tracking with
Online Multiple Instance Learning. In: IEEE CVPR (2009)

[17] Li, Y., Huang, C., Nevatia, R.: Learning to Associate:
HybridBoosted Multi-Target Tracker for Crowded Scene.
In: IEEE CVPR (2009)

[18] Yang, M., Wu, Y., Hua, G.: Context-Aware Visual
Tracking. IEEE Trans. on Pattern Analysis and Machine
Intelligence (July 2009)

[19] "Intersection over Union (IoU) for Object Detection."
PyImageSearch. N.p., 27 Sept. 2016. Web. 11 June 2017.
<http://www.pyimagesearch.com/2016/11/07/intersection-o
ver-union-iou-for-object-detection/>.

[20] "MOT Challenge." MOT Challenge. N.p., n.d. Web. 11
June 2017. <https://motchallenge.net/>.

[21] Signal & Image Processing : An International Journal
(Sipij) Vol.7, No.3, June 2016. SURVEILLANCE VIDEO
USING COLOR AND HU MOMENTS (n.d.): n. pag. Web.

[22] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into
convolutional nets. In Proc. BMVC., 2014.

[23] Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg and Li Fei-Fei. (* = equal contribution) ImageNet
Large Scale Visual Recognition Challenge. International
Journal of Computer Vision, 2015.

[24] S. J. Pan and Q. Yang, "A Survey on Transfer Learning," in
IEEE Transactions on Knowledge and Data Engineering,
vol. 22, no. 10, pp. 1345-1359, Oct. 2010.

[25] Bernardin, Keni, Alexander Elbs, and Rainer Stiefelhagen.
"Multiple object tracking performance metrics and
evaluation in a smart room environment." Sixth IEEE
International Workshop on Visual Surveillance, in
conjunction with ECCV. Vol. 90. 2006.

[26] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time
object detection with region proposal networks." Advances
in neural information processing systems. 2015.

8

http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://motchallenge.net/
http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

