
A Learning Approach to Compressed Sensing

Phan Minh Nguyen
Stanford University

Abstract

Can we solve inferential problems using a learning ap-
proach? We explore the use of learning systems, as black
boxes, in solving the compressed sensing problem. In par-
ticular, we derive a regression problem from the compressed
sensing problem, and investigate how the convolutional
neural networks and the variational auto-encoders perform
under various settings.

1. Introduction
Can we solve inferential problems using a learning ap-

proach? We investigate this question with the specific in-
stance of compressed sensing.

Compressed sensing is a linear inverse problem where
the setting is underdetermined. More specifically, we are
given an observation y ∈ Rm and a matrix A ∈ Rm×n such
that y = Ax0, for some x0 ∈ Rn. Here m < n (hence
underdetermined setting), and we are asked to recover x0

given the knowledge of y and A. Of course, if we know
nothing more about x0, there is no way to guarantee that we
can recover exactly x0, since m < n. The way is to assume
that x0 belongs to a class of signals, i.e. a subset of Rn of
some special structure. It is a common assumption that x0

is sparse.
In image processing, it is well-known that an image is

approximately sparse when represented in an appropriate
basis, e.g. some wavelet basis. Methods have been devel-
oped with guarantees for exact recovery of x0 when the as-
sumption of sparseness is correct. In general, by making
assumptions on the structure of x0 (i.e. restricting attention
to a known a-priori model of x0), inferential methods can be
developed with certain optimality. Yet there are several is-
sues. Firstly, the assumptions are usually highly idealized,
and x0 is never exactly sparse. More importantly, when
dealing with specific objects like natural images, there can
be more (or perhaps less) structural properties than (approx-
imate) sparseness, and yet it is not a trivial task to model
these structures. A natural question is, is there a way to go
around developing model-based methods?

We explore a learning approach to this problem. More

specifically, we ask the question: what if we can learn the
structure? More broadly, what if we can learn to recover x0,
without explicitly finding the structure?

2. Literature Review
Compressed sensing emerged from the two papers [7, 4]

in 2006, where it was shown that by solving a simple convex
program

min
Ax=y

‖x‖1 (1)

it is possible to recover x0, provided that x0 is sufficiently
sparse. The literature has since grown quickly. Notably the
work [8] introduced an iterative algorithm, called the ap-
proximate message passing (AMP), to solve the compressed
sensing problem. The work [16] modified the AMP to adapt
to various (assumed) structures beyond sparseness, leverag-
ing on the extensive literature of signal denoising and image
processing. We emphasize that all these methods are infer-
ential.

Recent progresses in machine learning propel interests in
applying learning viewpoints to this problem. Three-layer
stack denoising auto-encoders and convolutional neural net-
works (CNN) were explored in [19] and [18] respectively.
These take a regression-based learning approach: given a
training set of x0’s, one can generate training y’s based on
the model y = Ax0 and train a learning system to output
an approximation of x0 from y. Notably the idea is not new
and has appeared in e.g. the context of error-correction cod-
ing.

The third approach hybrids these two viewpoints [14, 17,
5]. These works built a learning system by retaining the
overall structure of a well-understood inferential algorithm,
while having its specific features (e.g. parameters or denois-
ing functions) learned. Again this idea is not new (see e.g.
[12]).

3. Approach
We investigate the use of CNN and variational auto-

encoders (VAE) [15, 6], taking the regression-based learn-
ing approach. The choice of CNN follows [18], and is an
intuitive choice since CNN accounts for spatial structures.

1



Figure 1. An image from CIFAR-10 Data: original, gray-scaled,
and Haar-transformed.

Figure 2. Image representation of a typical x0 from Artificial Data.

We take note of the differences. Firstly, we use a deeper
architecture (4 layers as opposed to 2 layers in [18]). Sec-
ondly, we also explore several issues not addressed in [18].
The choice of VAE, to the best of our knowledge, is not ex-
plored in the literature, and is also an intuitive choice, since
the learning problem here is very similar to one that auto-
encoders address.

The overall framework is as follows. For the x0 data, we
either extract it from CIFAR-10 images (CIFAR-10 Data),
or generate it artificially (Artificial Data).

• CIFAR-10 Data: For each CIFAR-10 image u, we
first transform it into gray-scaled image ũ for simplic-
ity, then further transform it into x0 = Φũ, where Φ
is the Haar transform of level 3, so as to obtain an ap-
proximately sparse x0 ∈ Rn. Note that Φ is orthogonal
and so preserves all information about ũ. An example
image is shown in Fig. 1.

• Artificial Data: We generate x0 ∈ Rn with en-
tries independent and identically distributed (i.i.d.),
with P (x0,i = 0) = 0.9 and P (x0,i = −1) =
P (x0,i = 1) = 0.05. This generates very sparse x0.
Here n = 32× 32 = 1024, matching with the CIFAR-
10 image dimension. Note that this is the type of x0

data that the AMP and other inferential methods are
shown to work well with. A typical x0 in this data set
is shown in Fig. 2.

We generate a matrix A ∈ Rm×n with entries i.i.d. as
N (0, 1/m). This is a common choice in the compressed
sensing literature. We keep A fixed for all training and test-
ing procedures. For each x0, we obtain y = Ax0. For
different undersampling ratio, m varies.

The learning system takes y as input and outputs x̂, an
approximate of x0. Here we impose that the first layer to be
AT y, which is then passed to a neural network. In doing so,

we keep the dimension of the input fed into the neural net
to be n fixed, instead of varying m, hence simplifying the
design. Furthermore, it is very likely that A has full row-
rank, hence AT y preserves complete information about y.

For CNN, we employ the following architecture:

CNN :y → AT y

→
{

CONV(5, 16)→ ReLU→ CONV(5, 16)

→ BN→ ReLU→ POOL
}
× 2

→ FULL→ x̂ (y)

where CONV (5, 16) denotes a convolutional layer with 16
filters of size 5 × 5, BN denotes the batch normalization
layer, POOL denotes a max pooling layer with stride 2 for
each dimension, and FULL denotes a fully connected layer.
For VAE, we employ the following architecture:

VAE :y → AT y

→
{

FULL400 → BN→ ReLU
}
× 2

→ Z→
{

FULL400 → BN→ ReLU
}
× 2

→ FULL→ x̂ (y)

where FULL400 denotes a fully connected layer with hid-
den dimension 400, and Z denotes the latent layer with la-
tent dimension 100. We note a finding that the batch nor-
malization layer is key to faster convergence, which is im-
portant for a regression problem that may take more epochs
than a typical classification problem to obtain a reasonable
performance. We also note that we do not use convolutional
layers in the architecture of VAE, since it plays a comple-
mentary role to CNN.

For N training points
{
x
(i)
0 , y(i)

}N

i=1
, we consider the

following loss function for training:

Loss =
1

N

N∑
i=1

∥∥∥x̂(y(i))− x
(i)
0

∥∥∥2
2
. (2)

For most experiments, we use N = 2000 for the interest of
time. The validate and test sets are chosen to have size 1000
each. To measure the quality of recovery, we use

1

N

N∑
i=1

1

{∥∥∥x̂(y(i))− x
(i)
0

∥∥∥2
2
≤ 0.05

∥∥∥x(i)
0

∥∥∥2
2

}
(3)

which is referred to as the accuracy. We only use the test
accuracy, not the training accuracy or validation accuracy,
to measure the performance.

In all experiments, we train CNN for 100 epochs, and
VAE for 300 epochs. We also apply `2 regularization.

2



0 0.2 0.4 0.6 0.8 1

m/n

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

AMP
CNN
VAE

Figure 3. Performance on CIFAR-10 Data.

4. Experiments and Discussions
We perform several experiments in an exploratory man-

ner. Each is described in a section below. In some experi-
ments, we also present the performance of the original AMP
[8] for comparison, although we note that there are variants
of the AMP that may work better.

4.1. Experiment 1: CIFAR-10 Data

We experiment with the CIFAR-10 Data. The result,
plotted against the underdetermined ratio m/n, is shown
in Fig. 3. It is quite disappointing that the learning systems
do not seem to attain accuracy close to 1 as m/n → 1, un-
like the AMP which does so already at m/n ≈ 0.7. This
may be due to inadequate hyper-parameter tuning, insuffi-
cient number of training epochs, or insufficient training data
size. We note that the training accuracy of both CNN and
VAE also does not reach anywhere close to 100% accuracy,
and so while more careful regularization may yield an im-
provement, we do not expect to see near-perfect accuracy
with better regularization.

The fact that the performance quickly saturates at some
accuracy as m/n increases raises the question whether there
is a fundamental issue with the learning approach, aside
from the aforementioned engineering factors. Let us con-
sider two hypotheses.

• Hypothesis 1: Intuitively when m/n = 1, A is a full-
rank square matrix, and so y should contain all infor-
mation about x0. However even in that case, the per-
formance is not great. The hypothesis is that the learn-
ing systems might have to spend enormous efforts to
infer the matrix A, since we do not feed the knowl-
edge of A into the neural networks. Note that the size
of A is mn, and so even for m = 0.05n, this accounts
for 52× 103 unknowns!

• Hypothesis 2: We observe that, curiously, CNN and

0 0.2 0.4 0.6 0.8 1

m/n

0

0.5

1

A
cc

ur
ac

y

AMP
CNN
VAE

Figure 4. Performance on Artificial Data.

VAE still get non-trivial accuracy when m/n is low,
beating the AMP. We hypothesize that our learning
systems are able to infer some structure about the
CIFAR-10 images and use that knowledge to recon-
struct test images. This is a feature distinct from infer-
ential methods like the AMP. However learning might
not offer optimality that inferential methods can attain,
and so perfect performance (i.e. close to 100% accu-
racy performance) is not guaranteed.

At this point, we have an odd situation. On one hand, one
may argue that having to infer A is the key obstacle. Note
that if we know A exactly, in the case m/n = 1, one can
solve the linear system y = Az for z and deduce the solu-
tion z = x0. This is a simple inferential procedure. On the
other hand, we see that the learning systems do not seem to
mimic an inferential procedure. Which is true?

In the rest of the report, we will see that empirical evi-
dence supports Hypothesis 2. In Section 4.6, we will argue
that Hypothesis 1 can be false.

As another observation, CNN works better than VAE.
This is unsurprising, given that x0 is derived from images.

4.2. Experiment 2: Artificial Data

We experiment with the Artificial Data. As mentioned
in Section 3, this is the regime where the AMP works very
well, so a good performance of the learning systems here
would imply that we can do inference by learning. The re-
sult is shown in Fig. 4. Surprisingly, as a stark contrast
to the AMP, both CNN and VAE achieve zero accuracy for
any m/n! In fact, test accuracy, training accuracy and val-
idation accuracy are all zero. What’s wrong? Given that
CNN and VAE are able to learn with the CIFAR-10 Data,
the cause should lie in the structure of x0 in the Artificial
Data.

First, note that the sparsity level P (x0,i = 0) = 0.9 is
high. Intuitively, the sparser x0 is, the less information we
need to infer. Yet the learning systems could not extract
anything at such high sparsity level, which the AMP does
not seem to have a trouble with. We thus hypothesize that
the cause is in that the entries in x0 are generated indepen-
dently.

3



Delving deeper into this hypothesis, we recall that the
neural networks are universal approximators, i.e. they can
approximate any reasonable function. The AMP, or infer-
ential methods such as (1), admit very simple descriptions.
That is, there exists a function with a simple procedural de-
scription that works well. Then why can’t our learning sys-
tems learn, at the very least, to approximate this function?
In other words, what do they have troubles learning? Note
that it is hypothesized in Section 4.1 that the systems have
to learn to infer A. However, if this hypothesis is true, then
the systems also have to infer A with the CIFAR-10 Data,
yet still achieve a reasonable accuracy.

We conclude that the independence structure in the x0

data set is what renders CNN and VAE unable to learn.
This is complementary to the conclusion in Section 4.1:
our learning systems are in favor of data sets with certain
structures (which, in this case, are image-derived), and in a
disadvantage when learning from data sets with other struc-
tures.

We do another experiment to further validate this con-
clusion. We train on the CIFAR-10 Data, but test on the
Artificial Data. As expected, the training accuracy is rea-
sonably above zero, but the test accuracy is zero. We see
that the learning systems do not try to approximate an infer-
ential procedure, but rather learn the structures in the data.

4.3. Experiment 3: CIFAR-10 Data with Different
Classes

The discussion in Section 4.2, which concludes that the
nature of a data set strongly affects the performance of a
learning system, leads us to another question. What would
happen if we work on CIFAR-10 Data, but the training
images and the test images belong to classes of different
natures? We perform training on images drawn from the
classes “plane”, “car”, “ship”, “truck” (vehicle class), and
testing on images from “bird”, “cat”, “deer”, “dog”, “flog”,
“horse” (animal class).

The result is shown in Fig. 5. We see that CNN and
VAE still perform reasonably well, but suffer a noticeable
loss. That is, the neural networks are able to generalize,
but insufficient diversity in the training data degrades the
performance.

This is not surprising in light of the discussion in Sec-
tion 4.2, as well as the intuition that images from the ani-
mal class are not of drastically different nature from images
from the vehicle class.

4.4. Experiment 4: CIFAR-10 Data without Haar
transform

One question is whether it offers any advantage if we set
x0 = ũ (gray-scaled image), instead of Φũ (Haar transform
of the image), i.e. we do not perform Haar transformation.
Of course, a natural image should be of different structure

0 0.2 0.4 0.6 0.8 1

m/n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

CNN (Exp. 3)
VAE (Exp. 3)
CNN (Exp. 1)
VAE (Exp. 1)

Figure 5. Performance on CIFAR-10 Data, with training and test-
ing on different classes. Exp. 3 refers to the experiment in Section
4.3, and Exp. 1 refers to Section 4.1.

0 0.2 0.4 0.6 0.8 1

m/n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A

cc
ur

ac
y

CNN (Exp. 4)
VAE (Exp. 4)
CNN (Exp. 1)
VAE (Exp. 1)

Figure 6. Performance on CIFAR-10 Data, without Haar trans-
form. Exp. 4 refers to the experiment in Section 4.4, and Exp.
1 refers to Section 4.1.

from its Haar transform, and we expect to see a change in
performance.

The result is shown in Fig. 6. Removing Haar transfor-
mation indeed improves the performance of CNN. This is
not surprising, since the CNNs are known to be well suited
for visual data. But curiously the performance of VAE nei-
ther improves nor degrades.

In fact, there is a simple reason behind this observation,
argued as follows. We note that Φ is an orthogonal transfor-
mation. Notice that x0 enters the system in only two ways:
firstly, it is present in the `2 loss ‖x̂− x0‖22 that appears
in both the loss function (2) and the accuracy measurement
(3), and secondly, it appears in the input to the neural net-

4



0 0.5 1 1.5 2 2.5 3 3.5

Training size ×104

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

AMP
CNN
VAE

Figure 7. Performance on CIFAR-10 Data, plotted against the
training size, at m/n = 0.6.

work.
To see that Φ does not affect ‖x̂− x0‖22, note that

‖x̂− ũ‖22 = ‖Φx̂− Φũ‖22

i.e. for the system without Haar transform, it would re-
main the same as one with Haar transform if we multiply
the weight of the last fully connected layer with Φ. This is
possible since we do not impose any structure on the weight
matrix of the fully connected layer.

To see that Φ does not affect the input to the neural net-
work, recall that this input is ATAΦũ when using Haar
transform, and ATAũ when not using it. Let B = AΦ
and hence ATAΦũ = ΦBTBũ. Recall that A has entries
i.i.d. Gaussian, and therefore rotationally invariant. That is,
B has the same distribution as A. Therefore, BTBũ has
the same distribution as ATAũ. Finally, to see that Φ in
ΦBTBũ does not affect the result, notice that in VAE, this
input to the neural network is immediately passed through
a fully connected layer. This completes our argument.

4.5. Experiment 5: More CIFAR-10 Training Data

We ask the question whether we can address the problem
of unsatisfactory performance with more training data. The
result is shown in Fig. 7, where we experiment at the under-
determined ratio m/n = 0.6. Indeed, increasing the train-
ing size from 2000 significantly improves the performance.
Yet the gained advantage diminishes when the training size
becomes very large. There is still an observable gap to the
AMP performance.

4.6. Experiment 6: The role of A

We depart from the underdetermined setting, set m = n,
and ask whether the presence of A has any influence on
the performance. When the system is without A, one can

Exp. 1 Exp. 3 Exp. 4
CNN with A 0.755 0.673 0.829
CNN w/o A 0.628 0.572 0.931
VAE with A 0.445 0.368 0.469
VAE w/o A 0.448 0.374 0.472

Table 1. Performance with and without A, for m/n = 1. Exp. 1, 3
and 4 refers to the setting in Sections 4.1, 4.3 and 4.4 respectively.

simply think of that as A = I the identity matrix. We ex-
periment this with the settings in Sections 4.1, 4.3 and 4.4.
The result is shown in Table 1.

First observe that for VAE, the presence of A does not
affect the performance at all. Again, one can explain this
mathematically. Note that A is almost surely full-rank. Fur-
thermore, for two different rows (or columns) A1 and A2 of
A, we have 〈A1, A2〉 =

∑n
i=1 A1,iA2,i, which converges

to 0 in probability as n → ∞ by the law of large numbers,
since A has entries i.i.d. as N (0, 1/n). In addition, ‖A1‖22
also converges to 1 in probability as n→∞. Therefore, for
large n, A is approximately orthogonal. Recall that in VAE,
the input to the neural network ATAx0 is passed through
to a fully connected layer. Since A is almost orthogonal, it
does not affect the performance.

We observe that when with A, CNN performs better in
the settings of experiments 1 and 3, but worse in experiment
4. Recall that in experiment 4, we set x0 to the gray-scaled
image. As such, CNN is expected to work better without A.
This is in agreement with the result in Section 4.4, where
applying a transformation on the gray-scaled image would
yield worse results.

The fact that CNN works better with A in experiments
1 and 3 is intriguing. We return to Hypothesis 1 in Section
4.1, which states that the learning systems have to infer A,
which hinders good performance. We see that depending
on the nature of the data, it is possible that having A in the
system is beneficial. As such, Hypothesis 1 is likely false.

There is yet another intriguing implication. Suppose we
want to build a learning system which takes x0 as input and
tries to output an approximation of it (which is essentially
the task of an auto-encoder). Here the system employs the
convolutional architecture. Then depending on the nature
of x0, it is possible to improve the performance by adding
an extra layer before the neural network. This layer simply
multiplies x0 with ATA, where A ∈ Rn×n with entries
i.i.d. as N (0, 1/n).

Furthermore, as seen in Fig. 3 and 5, for A ∈ Rm×n with
m/n < 1 sufficiently high, the performance loss is negligi-
ble. Hence, in the above interpretation, one can reduce com-
putational cost by, instead of generating A a square matrix,
generating A with dimension m× n.

This suggests a very cheap way to gain some perfor-
mance, as one builds a convolutional neural network for

5



auto-encoding tasks, depending on the nature of the data!

5. Concluding Remarks
Throughout several experiments, an important insight we

have gained is that learning systems inherently learn the
structure within data, and use that knowledge to perform in-
ference. The performance is highly dependent on the nature
of the data, in particular, whether this nature is matching
with the architecture of the neural network.

What does this imply? On one hand, the learning system
can adapt to the data, whose structure might be poorly un-
derstood, a situation where model-based inferential meth-
ods may not work well. On the other hand, if the nature
of the data is not matching with the underlying architec-
ture, the result can be unsatisfactory or even atrocious. So
when approaching an inferential problem with learning, we
trade optimality with flexibility. That is, when the data’s
structure is completely understood, one can try to find an
optimal inferential method. Yet when there is no good in-
ferential method available at hands for a particular set of
data, one can opt for engineering a learning system using
well-known architectures.

To achieve better performance with learning in the com-
pressed sensing problem, one ought to have good data di-
versity, as well as abundant training samples.

We have also seen an intriguing instance (in particular,
experiment 6 in Section 4.6) where one takes ideas from
inferential problems to make improvements to a learning
problem. This hints some connection between inferential
problems, or particularly compressed sensing, and learning
problems. Recent works [11, 10] have studied in this direc-
tion.

There are factors that we have not discussed here. As
mentioned in [18], the deep neural network system has the
advantage of speed: the test / inference time is fast, since
it comprises of mainly matrix multiplications. We further
comment on this point. In the case of the AMP, the com-
putation also comprises of mainly matrix multiplications,
and usually takes 30 iterations to run. So the inference time
of a neural network would match the computation time of
the AMP if its number of layers is (on the order of) about
30. Other variants of the AMP may take much longer, due
to complex functions needed to compute. Yet we can hope
that with that number of layers, the representation power of
the neural network is sufficiently high to attain good perfor-
mance for certain data sets.

Another factor is that the learning approach requires a lot
of training data, with sufficient data diversity, whereas the
inferential methods do not require any training data. Hence
learning can be helpless in situations with data scarcity.

Finally, in this project, we have been using learning sys-
tems as black boxes. One drawback of the considered archi-
tectures is that they do not well incorporate knowledge of

the matrix A. As mentioned, there are more principled ap-
proaches that hybrid inferential methods such as the AMP,
and learning. Optimality of such approach is yet to be seen.

References
[1] M. Bayati, M. Lelarge, and A. Montanari. Universality in

polytope phase transitions and iterative algorithms. In Infor-
mation Theory Proceedings (ISIT), 2012 IEEE International
Symposium on, pages 1643–1647. IEEE, 2012.

[2] M. Bayati and A. Montanari. The dynamics of message pass-
ing on dense graphs, with applications to compressed sens-
ing. IEEE Transactions on Information Theory, 57(2):764–
785, 2011.

[3] M. Borgerding and P. Schniter. Onsager-corrected deep
learning for sparse linear inverse problems. arXiv preprint
arXiv:1607.05966, 2016.

[4] E. J. Candes and T. Tao. Near-optimal signal recovery
from random projections: Universal encoding strategies?
IEEE transactions on information theory, 52(12):5406–
5425, 2006. 2

[5] J. Chang, C.-L. Li, B. Poczos, B. Kumar, and A. C. Sankara-
narayanan. One network to solve them all—solving linear in-
verse problems using deep projection models. arXiv preprint
arXiv:1703.09912, 2017. 2

[6] C. Doersch. Tutorial on variational autoencoders. arXiv
preprint arXiv:1606.05908, 2016. 3

[7] D. L. Donoho. Compressed sensing. IEEE Transactions on
information theory, 52(4):1289–1306, 2006. 2

[8] D. L. Donoho, A. Maleki, and A. Montanari. Message-
passing algorithms for compressed sensing. Proceedings of
the National Academy of Sciences, 106(45):18914–18919,
2009. 2, 4

[9] A. Dosovitskiy and T. Brox. Inverting visual representations
with convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4829–4837, 2016.

[10] A. C. Gilbert, Y. Zhang, K. Lee, Y. Zhang, and H. Lee. To-
wards understanding the invertibility of convolutional neural
networks. arXiv preprint arXiv:1705.08664, 2017. 5

[11] R. Giryes, G. Sapiro, and A. M. Bronstein. Deep neural net-
works with random gaussian weights: A universal classifica-
tion strategy. CoRR, abs/1504.08291, 2015. 5

[12] K. Gregor and Y. LeCun. Learning fast approximations of
sparse coding. In Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), pages 399–406,
2010. 2

[13] K. Jarrett, K. Kavukcuoglu, Y. LeCun, et al. What is the best
multi-stage architecture for object recognition? In Computer
Vision, 2009 IEEE 12th International Conference on, pages
2146–2153. IEEE, 2009.

[14] U. S. Kamilov and H. Mansour. Learning optimal nonlin-
earities for iterative thresholding algorithms. IEEE Signal
Processing Letters, 23(5):747–751, 2016. 2

[15] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013. 3

6



[16] C. A. Metzler, A. Maleki, and R. G. Baraniuk. From denois-
ing to compressed sensing. IEEE Transactions on Informa-
tion Theory, 62(9):5117–5144, 2016. 2

[17] C. A. Metzler, A. Mousavi, and R. G. Baraniuk. Learned
d-amp: A principled cnn-based compressive image recovery
algorithm. arXiv preprint arXiv:1704.06625, 2017. 2

[18] A. Mousavi and R. G. Baraniuk. Learning to invert: Signal
recovery via deep convolutional networks. arXiv preprint
arXiv:1701.03891, 2017. 2, 3, 5

[19] A. Mousavi, A. B. Patel, and R. G. Baraniuk. A deep learn-
ing approach to structured signal recovery. In Communica-
tion, Control, and Computing (Allerton), 2015 53rd Annual
Allerton Conference on, pages 1336–1343. IEEE, 2015. 2

[20] Y. Wu and S. Verdú. Optimal phase transitions in com-
pressed sensing. IEEE Transactions on Information Theory,
58(10):6241–6263, 2012.

7


