
Fast and CLEVR Visual Reasoning Programs via Improved Topologically
Batched Graph Execution

Joseph Suarez*
joseph15@stanford.edu

Clare Zhu*
clarezhu@stanford.edu

Abstract

We implement, explore, and heavily optimize the recent
dynamic program generator + execution engine architec-
ture of Johnson et al. for visual question answering (VQA)
on his CLEVR dataset. The execution engine is a severe bot-
tleneck in performance: as it is dynamically assembled per-
question, it is impossible to naively parallelize over batch
size. We present a variant of topological sort that both
improves theoretical complexity bounds and yields large
practical speedups. Our highly unoptimized implementa-
tion benefits from 2X faster training, 5.5X faster inference,
and 14X faster neural cell execution, which takes less time
than copying data to the GPU.

1. Introduction
The problem we address is neither VQA nor optimiza-

tion of a single architecture. Our motivation is to accel-
erate a large class of dynamic architectures such that they
become computationally comparable to their static counter-
parts. This cause is not motivated only by the recent suc-
cesses of dynamic architectures, but by their numerous de-
sirable properties that make them likely to retain and in-
crease in importance in the future.

We specifically explore Johnson et al.’s recent work [13]
because we believe it to be an exemplar of the potential ad-
vantages of dynamic architectures. The execution engine’s
modules not only yield dramatic accuracy gains over all
strong baselines, but also are currently the best example of
explicit modularization of knowledge. An essential aspect
of intelligence is the ability to break one’s understanding
of the world into separate concepts without conflating un-
related ideas. Until now, it has been quicker to bombard
a single (often not human-readable) network with informa-
tion instead of attempting to learn distinct logical concepts.
This is backward, given the success of the work of Johnson
et al. Our work places his approach on equal computational
footing with single network architectures.

* Denotes equal contribution

1.1. Motivation

In our earlier work, we emphasized our intentions of
improving non-differentiability issues between the program
generator and the execution engine. However, upon com-
pleting our implementation of the CLEVR result, we found
that the vast majority of both error and computational time
come from the execution engine. We thus chose to focus
our efforts on computational cost for the reasons above, as
well as the fact that the model already performs well above
human accuracy.

1.2. Related Work

Previous notable dynamic graph results include neural
module networks [3] [2] and improvements thereupon [11],
which form the basis of the execution engine of Johnson
et al. The difference is that latter’s architecture is built
on generic, minimally-engineered neural network blocks,
which are more likely to generalize to a wider class of prob-
lems than the original neural module networks approach,
which uses a heavily-engineered question parser and cus-
tom per-module architectures. Whereas improvement upon
neural module networks constitutes improvement upon a
single architecture, improvement on the CLEVR architec-
ture is generalizable to a wide class of models under a min-
imal set of assumptions (see Discussion).

Additional dynamic graph results include neural Tur-
ing machines [6] and several improvements thereupon [7].
These approaches share in common with memory networks
[19] the goal of augmenting architectures with queryable
memory for read/write use during inference. However,
these approaches are still underdeveloped, and despite sev-
eral improvements in differentiability [18] and complexity
of the read/write operations [14], to our knowledge, no ar-
chitecture has achieved O(1) memory access and efficient
differentiable training. Furthermore, while such architec-
tures are applicable in problems requiring long-term mem-
ory, visual question answering places more focus on short
term memory. These works and the CLEVR result both tend
towards higher level reasoning and both suffer from high
computational complexity bounds, but they are otherwise

1



largely unrelated.
Short term memory is more closely related to the con-

cept of attention [5] and several improvements [15], all of
which share the key concept of allowing a network to di-
rectly query the states of all pieces of the input data. This
allows a network to focus, or ”attend,” to relevant portions
of the input during inference. While more standard in nat-
ural language processing and machine translation, attention
has been generalized to images as spatial attention [22].
While spatial attention was a key component of the orig-
inal neural module networks work, the recent CLEVR re-
sult achieves strong performance without the need for such
problem-specific, per-module engineering.

1.2.1 CLEVR

Our work is built atop the recently published CLEVR
dataset [12] and subsequent results on it, both of which we
examine in detail. CLEVR is a VQA dataset comprising
70K images and 700K questions/answers/programs triplets.
Images are synthetic but high quality 3D renders of geomet-
ric objects with varying shapes, sizes, colors, and textures.
The standard VQA task is given by (question, image) →
(answer). The difference lies in the inclusion of programs in
CLEVR, which are functional representations of the ques-
tions. CLEVR therefore allows VQA to be split between
two intermediate tasks, as in Johnson et al.’s recent work:
(question)→ (program) and (program, image)→ (answer).

One might argue that intermediate programs are unre-
alistic, as one is unlikely to have program annotations in
large, realistic tasks. However, the advantage gained from
dynamic architectures when they are available is too large
to discount. Additionally, earlier visual question answering
datasets, such as the eponymous VQA [4], are free-form and
extremely difficult. However, this difficulty is likely not re-
solvable by incremental progress in network architectures
without additional labeling information. This argument is
corroborated by the existence of strong biases in previous
VQA datasets, as discussed in the original CLEVR work,
which further challenges the already low accuracies on the
VQA dataset as compared to VQA on CLEVR.

CLEVR is also much more realistic than previous syn-
thetic datasets, such as DAQUAR [16], which comprises
only 8 question templates used to generate 420 unique ques-
tions. Johnson et al. took ample precautions to avoid biases
in the questions without compromising realism or variety.
This is illustrated by the success of his result on human writ-
ten questions, as considered in his original work.

From the program generator + execution engine CLEVR
result, it seems likely that one could collect a small number
of annotations on realistic datasets and use these to initialize
the program generator. However, we contend that one could
also train the program generator on CLEVR and fine-tune

Figure 1. Architecture of the CLEVR model (Johnson et al. 2017)

jointly on the other dataset. This is likely to be a more rea-
sonable approach, considering program annotations on syn-
thetic datasets can be generated directly and without error.
This approach of transfer learning from synthetic datasets
is likely to become more viable once synthetic datasets ad-
vance and become even more realistic.

1.2.2 Visual Reasoning Programs

The CLEVR result consists of a program generator and ex-
ecution engine as in Fig. 1. The program generator is a
basic 2-layer word-level question encoder LSTM [10] and
2-layer word-level (in this case function-level) program de-
coder LSTM. The encode-decode architecture is standard
in machine translation and has been used to great success
[21], thus the architecture is a logical choice for the task at
hand, which can be viewed as a translation from representa-
tion in natural language to functional representation. There
is only one deviation from the standard encode-decode ar-
chitecture: during both training and testing, the decoder re-
ceives the encoder output at every timestep instead of the
ground truth label. For ease of parallelization over mini-
batches, each sequence is zero-padded to a uniform fixed
length.

Between the program generator and the execution engine
is a non-differentiable argmax. This is required in order to
select the discrete program functions used in the execution
engine. It also impedes end-to-end training and mandates
the use of REINFORCE [20]. While this appears subopti-
mal, in practice almost all error and computation time come
from the execution engine. For this reason we do not con-
sider REINFORCE to be a considerable detriment to gener-
alizability, therefore we do not consider improvements upon
differentiability in the present work. (See Appendix, section
A.1.)

The execution engine is less standard. As the arity (num-
ber of arguments) of each function predicted by the program

2



Figure 2. An example of the ”coloring” mechanism used for improved topological sort.

generator is predetermined, there exists a unique mapping
from the predicted vector of functions to a program tree.
This is assembled via a simple depth-first search. Each
function is itself a neural network, with the exception of
a special SCENE token, which simply outputs ResNet-101
features [9] taken from an intermediate layer. This program
tree is then directly executed, and the outputs are passed
through a small classifier network (one convolutional and
two fully connected layers) to yield a softmax distribution
over answers, which is then optimized as normal via back-
propagation over the cross-entropy loss.

This approach yielded an 8.6X improvement over strong
baselines and a 2.2X improvement over human-level perfor-
mance.

2. Methods

In the original CLEVR result, programs must be exe-
cuted sequentially with an explicit loop over the examples
in each minibatch. As a result, unlike static networks, the
computation time of the forward pass scales linearly with
the batch size. We present two variants of topological sort
that remedy this issue.

To clarify the ongoing notation, programs have max
length s and function vocabulary size p. The batch size is
denoted by b and the max program tree depth by d.

Standard topological sort. First, consider a naive topo-
logical sort. Each program tree is first considered indepen-
dently. It is sorted via an infix depth-first search. This re-
sults in a queue ordering such that each operation can be
executed sequentially; no node is executed before all of its
dependents. While this operation runs in time linear in the
number of nodes (e.g. O(bs)), it is fast compared to ex-
pensive neural network operations and can be multithreaded

extremely efficiently, thus we ignore this factor in our com-
putations. (See Appendix, section A.2.)

We now have a flat representation of each program,
which can be viewed as a grid of size b × s. Instead of
executing each program independently, we loop only over
the columns and execute one full row at a time in parallel.
Each node corresponds to a different element in the func-
tion vocabulary. However, for b > p, we need only make p
expensive neural network calls instead of b. This results in
O(ps) execution.

Improved topological sort. In the improved variant of
topological sort, we take this sorting operation one step fur-
ther. Instead of flattening programs, we instead color 1 each
node by the maximum distance between it and a child leaf
(see Fig. 2). Nodes of the same color (across all programs)
are assigned to the same pool. Each pool is executed at
once in O(p) neural network calls, for a total of O(pd). In
the case where program trees are balanced (important in the
design of future datasets), this yields O(p log2 s) execution.
The program trees used in CLEVR are, unfortunately, im-
balanced, thus this approach results in only a 10-25 percent
improvement in performance. Note that, as d is the maxi-
mum depth across all programs in a minibatch, d� log2 s.

3. Results

We evaluate performance gains with improved topologi-
cal sort vs. our implementation of the original architecture.
Relevant portions of program construction/execution code
are shared appropriately: our experiments are robust to any
unintended inefficiency in our implementation of the origi-
nal architecture.

1The ”coloring” is purely for ease of visualization and does not refer to
coloring in mathematical or graph analytic terms.

3



Figure 3. Log-scaled visualization of efficiency gains incurred
from our improved topological sort. Vanilla denotes the imple-
mentation in Johnson et al. This makes clearer the near-linear
gains in speed as the minibatch size approaches 1000.

Using all memory in a single Nvidia GTX 1080Ti, we
achieve 5.5X faster inference and a 2X faster backward pass
(see Fig. 3, Fig. 4). It is currently unclear why gains do
not better transfer to the backwards pass in the PyTorch [1]
backend, as the expected gains are symmetric. However,
this is not a fair comparison. Our sorting method introduces
additional CPU code which accounts for over half of exe-
cution time and is not present in the original architecture.
Furthermore, this CPU code is embarrassingly parallel and
should be written in multithreaded C++ (Python threads do
not actually yield performance gains due to the Global In-
terpreter Lock; we tested this extensively, see Appendix for
details).

Thus, a fairer comparison is to measure neural cell exe-
cution time, in which case we experience 14X gains. There
is a small amount of additional data-stacking code omitted
from this computation because it can likely also be opti-
mized; including this, gains are still well over 10X.

More importantly, scaling is linear with batch size. Dou-
bling GPU memory yields 2X performance. Those famil-
iar with minibatch parallelism may object that this perfor-
mance gain usually drops off after a certain point (minibatch
size >1000 in our experience). However, this is not likely to
be an issue in our case, as there is an additional factor of the
program function vocabulary size (40). With equal distri-
bution of execution over functions, minibatch size 1000 per
cell corresponds to overall minibatch of size 40000, which
would require approximately 500 GB of GRAM.

Furthermore, it is possible to maintain such gains in the
case of multiple GPUs (e.g. large batch size split over many
devices) by assigning a different cell function to each GPU,
though this would likely require a fair bit of bandwidth op-
timization.

Figure 4. Linear-scaled visualization of efficiency gains. Vanilla
denotes the implementation in Johnson et al. Included for stan-
dardization.

4. Discussion
The recent independent result of automatic minibatching

to DyNet is most similar to our work [17]. However, the
DyNet minibatching optimizer relies on lazy execution in
order to optimally organize data on the fly. Lazy execution
is not present in alternative frameworks such as PyTorch
and is often not the most desirable quality for developers
to implement. While automatic batching as in DyNet is
not possible in PyTorch, variants of our approach are vi-
able. Our standard topological sort and improved topologi-
cal sort approaches can therefore be viewed as a set of man-
ual batching optimizations applicable to a large class of dy-
namic architectures without the need for lazy execution.

Our improved topological sort makes the following hard
assumptions in order to achieve O(p log2 s) where com-
plexity is measured by the number of calls to expensive (e.g.
neural network) functions:

1. There exists a set of p expensive modules or functions
with known arities, usually neural networks.

2. The architecture, composed of modules, can be exe-
cuted with batch size b such that b� p.

3. The architecture is a balanced tree with structure
known a priori.

In the case where the third assumption fails because the
architecture is known ahead of time but is linear or an im-
balanced tree or DAG, our improved topological sort is still
applicable, but with complexity O(pd) where d is the max-
imum dependency path length. This has the same complex-
ity as the standard topological sort but with an equivalent or
more favorable constant factor.

In the case where the architecture is not specifically
known ahead of time but is a DAG, it is no longer possi-

4



ble to use our improved topological sort. However, as the
next module is always known in any architecture, it is still
possible to apply our standard topological sort approach and
achieve O(pd) by aggregating the computations of all cur-
rent modules over p. In the case of a generic graph with
cycles, this approach is still applicable, but d becomes the
maximum length of an unrolled graph, which is always lim-
ited in practice to avoid infinite cycles and thus infinite exe-
cution time.

5. Conclusion

We implemented the architecture described by Johnson
et al. and improved parallelizability over the branches of
each program tree and also over the minibatch dimension.
We achieve 14X neural cell execution speed and character-
ize the trend of improvements as batch size varies, which
yields increasing returns and becomes linear as batch size
approaches 1000. We define the classes of problems for
which our improved topological sort is applicable as well
as the classes where it is not but standard topological sort is
still feasible; in both cases, we provide complexity bounds
as a function of neural network calls.

The breadth of architectures in which at least one variant
of our sorting approach is applicable implies that a large
class of dynamic architectures can be trained and executed
as quickly and efficiently as their static counterparts.

5.1. Future Work

What remains is a problem of engineering. For the pur-
poses of the CLEVR result, a small amount of Python mul-
tiprocessing (as opposed to multithreading) code would suf-
fice to largely close the gap between the 5.5X forward pass
improvement and the 14X cell improvement.

For longevity and for the purposes of supporting arbi-
trary frameworks, we would need to rewrite our topolog-
ical sorter and executioner as a C++ multithreaded pack-
age callable from higher level frameworks (we focus on
PyTorch). This would facilitate application of our work to
novel architectures.

Though this is lower priority, for simplicity if not per-
formance or accuracy, it is still desirable to eliminate RE-
INFORCE from the algorithm and to reduce (or even elim-
inate a procedure for adapting) the need for ground truth
programs. Possible approaches vary from adding an in-
termediate divergence term to encourage the development
of distinct neural modules to imposing CycleGan [23] con-
straints on the network to enable the network to reconstruct
the question and answer from the program and the program
from the question. Briefly, these improvements comprise:

1. Eliminating the REINFORCE stage between the pro-
gram generator and the execution engine.

2. Reducing the number of ground-truth programs
needed for training the program generator.

A. Appendix
A.1. REINFORCE

REINFORCE is a sample-based algorithm for introduc-
ing differentiable reward into non-differentiable nodes in a
network. This operates by considering the final reward (e.g.
whether or not the final network prediction is correct) as the
intermediate reward. One can then consider the difference
between the reward obtained and an exponentially decaying
average of past rewards. This is because it is otherwise am-
biguous whether a reward is desirable. For example, getting
one example correct in 100 samples incurs some positive re-
ward, but this should still be penalized if, for example, the
baseline is correct fifty percent of the time.

A.2. From 5.5X to 14X

There is a clear and seemingly significant discrepancy
between the 5.5X speedup obtained in the forward pass
verses the 14X speedup obtained in the neural cell execu-
tion. We consider the breakdown of operations in the for-
ward pass in order to demonstrate our rationale for largely
ignoring this discrepancy. The forward pass consists of ex-
tracting ResNet features, compiling all programs, executing
all programs, and running the final classifier. In our imple-
mentation, ResNet features are extracted as a preprocessing
step and are thus computationally free; this point requires a
significant digression.

One might argue that ResNet is not ”free” at test time in
practical circumstances because the test examples will not
be known ahead of time. However, ResNet is already highly
optimized and highly parallel. Furthermore, only about half
of ResNet is executed before features are extracted, thus
further saving computation time. Finally, quantization tech-
niques exist for static networks such as ResNet that yield
large gains in performance [8].

Test-time minibatch parallelism is often feasible in real
world tasks. We do not address cases where this is not pos-
sible, as we are fundamentally interested in parallelizing ex-
ecution over minibatch. Furthermore, while fast inference
is more important than fast training in industry, for the pur-
pose of conducting efficient experimentation, training time
is just as essential in research. This is largely the setting and
motivation for our work.

Thus, we have illustrated our rationale for optimizing dy-
namic tree architectures despite the inclusion of a large fea-
ture extractor. The classifier in the CLEVR result executes
in a trivial fraction of the total computational time. Next to
all of the performance loss from 14X to 5.5X comes from
CPU code, along with a few unoptimized data stacking op-
erations at neural cell I/O.

5



The main reason we largely ignore this performance gap
is that the slow CPU code is embarrassingly parallel and
written in highly unoptimized Python. For example, we
found it far more readable and modular to first build the
programs in CPU code and then traverse them in CPU a
second time during execution. Realistically, these opera-
tions could be combined for a factor of two. More signif-
icantly, pure looping code usually benefits from at least a
10X speedup when transfered to C++. This, coupled with
an additional expected 10X speedup from multithreading,
ensures that GPU memory will always bottleneck computa-
tion before the CPU.

Furthermore, a larger gap is present in the backwards
pass. The backwards and forwards pass are symmetric and
should therefore observe similar speedups from our opti-
mization. This is, again, a problem of engineering. It is
almost certainly the case that the PyTorch backend is not
properly preserving our optimizations on the forward pass,
mandating the inclusion of custom backwards pass code.
As this is extremely cumbersome to write, we were unable
to test this properly. However, we were able to confirm that
the overhead of threading does not significantly impact per-
formance and is therefore likely to be of use in C++ (e.g.
without the Global Interpreter Lock preventing true paral-
lelization in Python).

There is the matter of a small amount of data aggregation
and splitting code at the input and output of each neural
module. Without significant optimization, this could cause
some penalty in performance. However, speedups will still
remain linear and over 10X while accounting for this factor.

A.3. Details of Theoretical Bounds

From above, it is clear why we exclude fast CPU opera-
tions from our complexity bounds. However, it remains un-
clear why we count only the number of neural network func-
tion calls without regard to the amount of data processed by
each call–particularly to those unfamiliar with typical effi-
ciency over minibatches. As CUDA operations are highly
parallelized and have high bandwidth, the time taken to ex-
ecute an optimized operation such as a matrix multiply (e.g.
convolutional and fully connected layers) is almost equal
for a wide range of minibatch sizes.

Depending on the size of input data and the number of
parameters, it is often possible to multiply the batch size by
10 while incurring only a 2X loss in performance, which is
effectively equivalent to 5X faster data processing. With
tuned learning rates (or simply advanced optimizers that
compute momentum updates), this almost always results in
a comparable increase in the rate of convergence. As we
found in prior work that for most configurations of paral-
lelizable operations, the batchsize/time tradeoff remains ex-
tremely favorable up until at least 1000, we thus count only
the number of neural network calls.

Our experimental results confirm that this hypothesis
holds almost perfectly. As batch size approaches 1000, the
gains in cell execution speed per example approach perfect
linearity. Note that as our effective batch size is, assuming
equal distribution over cell calls, 1000

40 = 25, it is almost
certain that we will continue to experience linear gains until
batch size become impractically large for single GPU mem-
ory constraints. We have already outlined a procedure for
efficient parallelization over multiple cards.

Until now, we have presented our standard and improved
topological sort approaches as distinct. However, until a
dataset is specifically constructed to satisfy the balanced
tree requirement, our improved topological sort is effec-
tively a heuristic. It always performs at least as well as stan-
dard topological sort: the standard approach always con-
siders exactly one module at a time, whereas the improved
variant considers at least one cell at a time. However, in
practice it is also possible to use the improved variant as a
heuristic in cases where the graph structure is not known
ahead of time and is arbitrary. At each step in any compu-
tational graph (e.g. neural network architecture), the next
operation to be executed is known. This is clear because it
would be impossible to execute an operation without know-
ing it.

More generally, at least one node is always known. It is
possible that many nodes could be known at once without
knowing the entire graph structure, for example, in the case
where the graph is an inverted tree. In this case, one should
adopt the policy of always executing all currently known
nodes at once, without breaking dependencies (e.g. as is
satisfied by the sort).

One might notice that this is not always optimal. While
the above strategy is always equal or superior to standard
topological sort, it may be possible to outperform both of
them. Consider the case in where there are two programs
to be executed and only two cells, 1 and 2. The first tree
is, from leaf to root, labeled (1, 2). The second is labeled
(2). In this case, it is better to execute (1) in the first tree
and then parallelize over both (2)’s. However, our improved
topological sort would first execute a (1) cell and a (2) cell
simultaneously, then execute the (2) cell in the first tree.

While there are certainly gains to be made by such
searches in arbitrary graphs, we do not consider them use-
ful on CLEVR (and no other large datasets, to our knowl-
edge, include generic program annotations) for two reasons.
First, such traversals would break our guarantee that the
CPU code will not account for a significant fraction of com-
putation time. Second, CLEVR does not contain complex
branching; we only observed a 10-25 percent improvement
in performance from standard to improved topological sort.
Many programs are perfectly linear. We thus consider such
additional complications unlikely to yield large speedups.

6



References
[1] Pytorch. https://github.com/pytorch/

pytorch. Accessed: 2017-06-11.
[2] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Learning

to compose neural networks for question answering. arXiv
preprint arXiv:1601.01705, 2016.

[3] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural
module networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[4] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,
C. Lawrence Zitnick, and D. Parikh. Vqa: Visual question
answering. In The IEEE International Conference on Com-
puter Vision (ICCV), December 2015.

[5] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[6] A. Graves, G. Wayne, and I. Danihelka. Neural turing ma-
chines. arXiv preprint arXiv:1410.5401, 2014.

[7] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette,
T. Ramalho, J. Agapiou, et al. Hybrid computing using
a neural network with dynamic external memory. Nature,
538(7626):471–476, 2016.

[8] S. Han, H. Mao, and W. J. Dally. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[11] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko.
Learning to reason: End-to-end module networks for visual
question answering. CoRR, abs/1704.05526, 2017.

[12] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L.
Zitnick, and R. B. Girshick. CLEVR: A diagnostic dataset
for compositional language and elementary visual reasoning.
CoRR, abs/1612.06890, 2016.

[13] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman,
F. Li, C. L. Zitnick, and R. B. Girshick. Inferring and execut-
ing programs for visual reasoning. CoRR, abs/1705.03633,
2017.

[14] K. Kurach, M. Andrychowicz, and I. Sutskever. Neural
random-access machines. CoRR, abs/1511.06392, 2015.

[15] M.-T. Luong, H. Pham, and C. D. Manning. Effective
approaches to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025, 2015.

[16] M. Malinowski and M. Fritz. A multi-world approach to
question answering about real-world scenes based on uncer-
tain input. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 27, pages 1682–1690.
Curran Associates, Inc., 2014.

[17] G. Neubig, Y. Goldberg, and C. Dyer. On-the-fly op-
eration batching in dynamic computation graphs. CoRR,
abs/1705.07860, 2017.

[18] S. Sukhbaatar, a. szlam, J. Weston, and R. Fergus. End-to-
end memory networks. In C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 28, pages 2440–2448.
Curran Associates, Inc., 2015.

[19] J. Weston, S. Chopra, and A. Bordes. Memory networks.
arXiv preprint arXiv:1410.3916, 2014.

[20] R. J. Williams. On the use of backpropagation in associative
reinforcement learning. In IEEE 1988 International Confer-
ence on Neural Networks, pages 263–270 vol.1, July 1988.

[21] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and
J. Dean. Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation. CoRR,
abs/1609.08144, 2016.

[22] H. Xu and K. Saenko. Ask, attend and answer: Exploring
question-guided spatial attention for visual question answer-
ing. In European Conference on Computer Vision, pages
451–466. Springer, 2016.

[23] J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. CoRR, abs/1703.10593, 2017.

7

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch

