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Abstract

In recent years, neural networks have produced some
very exciting results in diverse computer vision tasks, such
as image recognition, image captioning, artistic style trans-
fer, auto-coloring, segmentation and image generation. In
this paper we ask a fundamental question: ”How well do
these networks really understand images?” We explore this
question through through two approaches: first through the
task of Visual Question Answering (VQA), where a model
is trained on images and associated question answer pairs
in natural language. Next, we measure effectiveness of
transfer-learning to image recognition. We use a model pre-
trained on image-recognition task and retrain its weights
during VQA training and then test it again on image recog-
nition task.

1. Introduction

Neural networks have been used with remarkable suc-
cess in both Vision and Natural Language processing fields.
Although they grew out of the same underlying principles
of deep learning, these two fields have evolved somewhat in
silos. Visual Question Answering (VQA) is one of the few
task where we see the interplay of the two.

Architecture of VQA systems proposed in recent years
exhibit a recurring theme at broader level, typically consist-
ing of a module to extract features from the input image,
a module to learn some representation of input question,
a module for attention mechanism to identify the relevant
regions of image (yang et al, 2016, Xiong et al., 2016)
and question (Lu et al., 2017), and a module for Softmax
output. These methods typically used either Long Short
Term Memory (LSTM) or Gate Recurrent Units (GRU)
for the memory component. Memory for the LSTM/GRU
cells reside in the cell states, stored as weights. Xiong et al.
also proposed a new variant of GRU, the Attention GRU,
for handling complex queries sensitive to both position and
ordering of input facts. The gating mechanisms introduced
in the recurrent unit cells not only address the vanishing or
exploding gradient problems, but it also protects the cell
against irrelevant perturbations.

Figure 1: High-level View of Visual Question Answering
System and Cross-Transfer Learning. The blue arrow de-
fines typical transfer learning flow where representations
learned on one tasks is used in another task. The orange
arrow defines plugging the transfer learning representation
back to the original task.

Due to recurrent update mechanism, this memory captures
sequential dependencies well, but these very mechanism
also makes it to vulnerable to biases present in the training
data itself. In a recent study by Goyal et al. 2017, perfor-
mances of winning entries of VQA 2016 challenge were
observed to degrade on more balanced VQA v2.0 dataset.

In this paper, we seek to investigate the aspects of these
models that make it susceptible to biases in the training data.
We also aim to investigate the memory aspects of these
models and potential methods to make it generalized bet-
ter. Finally, we also report the end-to-end learning on the
CNN components by re-evaluating it on the image classifi-
cation task. We define cross transfer learning as the term for
this task.

The following section on related work presents a brief
summary of primary methods we have analyzed. The Ex-
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periments section outlines the baseline architecture and pro-
posed variations. The details of primary metrics of the
dataset and results are provided in the subsequent sections.

2. Related Work
Yang, Zichao, et al. suggest that the conventional ar-

chitecture of CNN feeding the whole image in one. step
to RNN/LSTM downstream does not allow the network to
have fine-grained learning. In most VQA scenarios, one or
a few small parts of the image usually answers the question.
The authors propose an architecture that evaluate sub-parts
of the image in phases and identify probabilities against the
question. This process allows for the network to learn where
to focus. Additionally, the authors also tried CNN in addi-
tion to LSTM for the question module, with CNNs filtered
on unigram, bigram, and trigram.

Richard Socher, et al. attempted to address certain lim-
itations around information flow of the standard GRU im-
plementation by an episodic memory module and infu-
sion layer, in what they call Dynamic Memory Network+
(DMN+). The attention mechanism in the episodic mem-
ory module creates a contextual vector-based on previous
memory states and the question.

The authors state that the unidirectional flow of tradi-
tional VQA networks allows knowledge to be propagated
only forward. The infusion layer addresses this by imple-
menting two sets of GRUs, one set going forward and the
other going back.

Lu, Jiasen, et al. suggest that while most VQA works fo-
cuses on attention in the image, attention in the question,
specifically which words to look at, is just as important.
The authors introduce two primary concepts in their paper:
question hierarchy and image/question co-attention.

In the question module, the authors apply a question hi-
erarchy which is similar to Yang, Zichao, et al. The hi-
erarchies are also processed by convolution into unigram,
bigram, and trigrams.

The second concept introduced by the authors is co-
attention of image and question. The difference of this part
of the process is the affinity matrix C is learned. The authors
also suggest the image/question co-attention to be learned in
parallel or alternating.

Another approach worth mentioning is Multi-Modal
Compact Bi-Linear pooling used by Akira Fukui et al.,
2016. There are two fundamental concepts at the heart of
this implementation. First, as per the convolution theo-
rem element-wise product is frequency domain is equiva-
lent to convolution in time domain and second, interaction
of features using elementwise multiplication or concatena-
tion can be significantly enhanced by using outer products
(Bi-Linear pooling, Lin et al. 2015, Gao et al. 2016). Bi-
linear pooling yields to richer interaction because each vec-
tor component interacts with every other element, however

because of higher dimensionality reasons it can quickly be-
come less that pragmatic. Akira et al. solve this problem
by introducing Compact Bi-Linear pooling. In this approch
first the features are projected to lower dimensional space
and then outer product computation is done using element-
wise product in frequency domain(Pham and Pagh,2013).
Compact Bi-Linear pooling was winning approach in VQA
challenge 2016.

3. Methods

3.1. Visual Question Answering

For VQA tasks we considered two base implementa-
tions: Stacked Attention Network (SAN), Yang et al. 2014,
and DMN+, Xiong et al., 2016. Both implementations have
a visual input module, a question module and an answer
module.

3.1.1 Stacked Attention Network

SAN was one of the earlier models introduced for VQA
tasks. In a SAN, output of visual input module and ques-
tion module are fed to the SAN. This follows the general
topology that consists of an image module, a question mod-
ule and an attention module.

Figure 2: Attention Computation in Stacked Attention Net-
work. Each layer is marked by broken lines. 2-Layer SAN
was found to perform better in practice.
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Image features in Figure-2 are derrived from pre-trained
VGG19 model (Last pooling layer (512x14x14); 14x14 is
the number of regions and 512 features for each region is
selected).

The question representation used by Yang et al. is based
on CNN. Authors reported experiments with both CNN and
LSTM-based representations, of which CNN based imple-
mentation was found to perform better. Hence we chose
CNN-based representation for our baseline experiments.
The architecture used for this representation is similar to
the one outlined by Kim et al. 2014 for sentiment analysis:

In the attention module, the image feature vector is fed
to a single layer neural network with softmax output to cal-
culate the attention distribution.

hA = tanh(WI,AvI ⊕ (W
Q,A

IvQ
+ bA)), (1)

pI = softmax(WPhA + bP ) (2)

where vI ∈RdXm, d is the image representation dimension
(512) and m is the number of image regions (196), vQ ∈Rd

is a d embedding dimensional vector. Suppose WI,A,WQ,A

∈RkXd and WP ∈R1Xk, then pI ∈Rm is an m dimensional
vector, which corresponds to the attention probability of
each image region given the question vector vQ. ⊕ is the
addition of a matrix and a vector (broadcasting).

An attention weighted image vector ṽI is subsequently
derived from element-wise multiplication of vI and proba-
bilities per region pI .

ṽI =
∑
i

pivi (3)

And refined query vector u is computed as:

u = ṽI + vQ (4)

Construction of eq-(1)-(4) may be repeated multiple
times to generate a deeper attention abstraction and corre-
sponding query vector as shown in figure-(2).

It should be noted here that the VGG net weights are
used only once for feature extraction of images are not
cross-trained on the VQA task. We found in methods pro-
posed by other authors that cross-training the pre-trained
weights of image module is helpful (Xiong et al. 2016,
Goyal et al., 2107) for VQA task.

3.1.2 Dynamic Memory Network

Input Module In DMN+, we feed the raw input image to a
pre-trained VGG-19 model for image input module. We use
the output of the last pooling layer of VGG-16 which has
a dimension of 512x14x14. This gives 196 local regional
vectors of size 512. Each of these local regional vectors are
multiplied by projected on the input weight matrix to give

Figure 3: Dynamic Memory Network [+] Architecture.

feature embeddings fi. The traversal to create embedding is
done from left to right, row by row. These individual facts
represent different regions of the input image. In order to
derive sequence sensitive representation of these facts, facts
in original reverse order are fed into GRUs. The output of
these GRUs is then summed to derive a fact representation
that can capture dependencies in both orders.

−→
fi = GRUfwd(fi,

−−→
fi−1) (5)

←−
fi = GRUbwd(fi,

←−−
fi+1) (6)

←→
fi =

←−
fi +

−→
fi (7)

Forward and backward GRUs are collectively shown as
bidirectional GRUs in figure 1. Specific unrolling of CNN
features and use of bidirectional GRU allows information
propagation from neighboring image patches, capturing
spatial information (Xiong et al., 2016).

Question Representation For question representation
Xiong et al. have used positional encoding introduced by
Sukhbataar et al. (2015) As per this encoding scheme, the
sentence representation is produced by:

fi =

j=1∑
M

lj � wi
j (8)

where � is element-wise multiplication and lj is a column
vector with following structure:

ljd = (1j/M)(d/D)(12j/M) (9)
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(a) Contour Plot (b) Positional Transform

Figure 4: Transform to map word embedding for sentence
words such that it is unique for all possible orders of words.

Here, d is the embedding index and D is the dimension of
the embedding. M is the total number of words in the sen-
tence. At first sight, this equation seems rather esoteric but
with a minor rearrangement we can see both the underlying
simplicity and the rationale for using this expression.

ljd = (1j/M)(1− d/D) + (d/D)(j/M) (10)

Preceding equation reveals the underlying hyperbolic
plane, which simply serves the purpose of unique mapping
of each point in the D-M plane to a unique value (as also
shown in the following figure). It is not difficult to observe
that any other transfer function which establishes similar bi-
jective relationship should serve the same purpose.

An alternative representation is a GRU-based question
representation. Xiong et al. have cited efficiency reason
for using positional encoding vs the GRU-based implemen-
tation. There is an important distinction to be made here.
DMN+ original architecture was targeted towards both the
natural language fact settings and visual question answer-
ing setting. In case of neural language fact setting, use of
GRU in input and question answer layer certainly leads to
efficiency issues. Since it would involve encoding multiple
sentences for both facts and question. However, in VQA
setting we only need to encode the questions from text. This
is the reason why in out implementation we took the liberty
of replacing the positional encoding modules with a GRU
for question representation.

Attention Mechanism and Episodic Memory are per-
haps the most crucial components of a VQA system. At-
tention Mechanism and Episodic Memory work in conjunc-
tion; an intuitive notion of attention suggests that attention
should be function of memory, question and facts (repre-
sentation of the input image). How the model allows these
inputs to interact results in its own unique attention mecha-
nism.

Xiong et al. described the following set for interactions

in their DMN-based VQA system.

zti = [
←→
fi � q;

←→
fi � mt−1; |

←→
fi − q|; |

←→
fi −mt−1|] (11)

where
←→
fi is the ith fact, m is the previous episode mem-

ory, q is the original question, � is the element-wise prod-
uct, |.| is the element-wise absolute value, and ; represents
concatenation of the vectors.

Compact Bi-Linear Pooling (Akira et al.), Hierarchical
Co-attention (Jiasen et al.) and the original Dynamic Mem-
ory Network (Kumar et al.), each use a different set of inter-
actions approaching the same objective. Interactions from
the preceding expression used further to compute attention
gate gti :

Zt
i = W (2)tanh(W (1)zti + b(1)) + b(2) (12)

gti =
exp(Zt

i )∑Mi

k=1 exp(Z
t
k

(13)

Attention gate gti is used furthermore to generate a context
vector which is used for episodic memory update. Dynamic
memory plus architecture uses a variant of Gate Recurrent
Units called Attention GRU:

Figure 5: Attention GRU. Notice the update gate vector

For our experiment we have used attention-based GRU
over another alternative presented by Xiong et al., attention
GRU method was reported to perform better by the authors.

Episodic Memory Module is GRU layer that uses con-
text vector as an input. Sukhbataar et al. also report using
different GRU weights for different memory passes.

Another alternative episodic memory implementation
described by Xion et. al is ReLU-based. In this implemen-
tation, the new episode memory state is obtained by

mt = ReLU(W t[mt−1; ct; q] + b) (14)

For efficiency reasons in our expetiments we have used
same GRU-based episodi memory implementation with
fixed weights across iterations. (referred to as tied weights).
The final output of the memory network is passed to the an-
swer module (softmax layer).

3.2. Cross Transfer Learning

Settings for cross-transfer learning follows the architec-
ture presented in Figure-1 with DMN architecture, with

4324



one difference: resnet-40 architecture trained on CIFAR-
10 is used for image feature extraction. Our implementa-
tion of resnet-40 network was achieved validation accuracy
of 90% on CIFAR-10. We chose CIFAR-10 so that weights
post VQA training could be plugged back in an re-evaluated
easily.

4. Dataset
Our data sources primarily came from Virginia Techs Vi-

sual Question Answering (VQA) Challenge, version 1.0 and
version 2.0; see References section. The v1.0 set includes
204,721 COCO images and 614,163 questions.

Unlike a binary scenario where one answer is correct and
the other is wrong, VQA datasets has possible multiple cor-
rect answers, and likely but incorrect answers. As an exam-
ple, a picture may have a child, a woman, and a frisbee, but
answers to the questions is the child throwing the frisbee or
is the woman holding the frisbee will be different based on
what is actually happening in the picture. We know one of
the two can be true or neither is true, but we cannot have
both being true. Hence, of the 614,163 questions, there are
6,141,630 ground truths (10x) and 1,842,489 plausible but
incorrect answers (3x).

An initial analysis we performed was to visualize the po-
sition of words in the question set. We performed a simple
word count on the questions using Apache Spark to col-
lect the top 50 most common words. We then used PCA
to compress the 300-dimension GloVe Global Vectors into
2-dimensions. This results are shown in the following Fig-
ure 6. The 2-D representation of 300-D original captured
58% variance. One question this word distribution brings

Figure 6: 2-D PCA Representation of GloVe Top-50

up is how much of the language prior plays into the results

and how much is the actual contribution of vision. Since
ultimately the model will respond based on probability, the
closeness of terms can possibly affect the outcome regard-
less of the picture itself. As in the previous example of the
child and frisbee, a question with the verb playing will have
a much higher probability than with the verb burning. This
is expected, as word vectors are learned to predict words in
proximity. In effect, the nature of the data set has an internal
skew.

Skew in a binary data set such as malignant/benign in
the case of cancer or abnormal/normal in the case of sys-
tem failure anomalies are common, where the former cases
are much less frequent than the latter cases. The VQA v2.0
attempts to address this (Goyal, et al., 2016) by asking the
same question on a picture with the ground truth changed.
For example, in the case of the child, woman, and fris-
bee, the question is the child throwing a frisbee? is asked
of two nearly-identical pictures, one where the child is in-
deed throwing a frisbee, and the other where the woman is
holding onto the frisbee and the child is not throwing the
frisbee.

The v2.0 data set uses the same 204,721 COCO im-
ages, but instead has 1,105,904 questions, with 11,059,040
ground truth answers. When we used the v2.0 dataset, we
saw a significant drop in accuracy compared to v1.0. This
suggests that the model relies heavily on language prior and
question, which is also seen in other research; see Results
section.

5. Experiments
For VQA baseline we consider used Stacked Attention

Network introduced by Yang et al. 2014. We trained the
network on VQA v1.0 data set. Dynamic memory network
architecture (Xiong et al.) was used for VQA objective and
cross transfer learning analysis. Conclusion of these exper-
iments is discussed in the next section.

5.1. Visual Question Answering

Since image data and natural language both are key in-
puts to VQA tasks we decide to perform four main experi-
ments:

1. DMN+ (glove 300 init) on VQA v1.0 dataset. This is
the configuration reported by Xiong et al. to perform
best on VQA 1.0 data set.

2. DMN+ (random init) on VQA 1.0 dataset. In order to
see the effect of pre-trained vs random word embed-
ding on VQA task.

3. DMN+ (glove 100 init), on VQA 2.0 dataset to analyze
of word vector dimensionality reduction as any influ-
ence on the strong language prior as cited Goyal et al.
for VQA v1.0 dataset.
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4. DMN+ (glove 300 init) on VQA 2.0 to assess the base-
line performance of dynamic memory plus architecture
in VQA2.0 dataset.

5.2. Cross Transfer Learning

The experiment for cross-transfer learning involved
plugging back post VQA training Resnet-40 for image clas-
sification task on CIFAR-10 dataset and analyze the differ-
ence in performance.

To test for the impact of language probabilities skewing
our results, our third experiment was to use the VQA v2.0
dataset introduced by Goyal, et al., 2016. This dataset adds
complimentary pictures for a given question to cancel out
the positive case bias.

6. Results

6.1. VQA

The experimental results of DMN+ implementation on
VQA 1.0 and VQA 2.0 for different instialization settings
are presented in Table2. In VQA dataset each question is
answered by mutliple people and the answers may not be
the same. Hence the correct answer is considered as the hu-
man consensus. To get the accuracy, answer a is only fully
correct if at least 3 people provide the same answer. If the
answer is given be less than 3 people,accuracy is given as
fraction of number of people gave the same answer and 3.
The results are obtained as overall accuracy and accuracy
depending on answer type. The dataset has 3 types of pos-
sible answers types, Yes/No, Number and Other.

Methods Dataset All Yes/No Number Other

SAN(2, CNN) VQA1.0 52.3 79.3 36.6 46.1

DMN+ glove 300 init VQA1.0 52.64 77.3 29.34 31.37

DMN+ random init VQA1.0 54.27 78.33 38.24 31.46

DMN+ glove 300 init VQA2.0 47.78 66.25 34.34 29.22

DMN+ glove 100 init VQA2.0 47.34 64.3 35.24 28.32

Table 1: Results for different Methods on VQA 1.0 and 2.0

In above table, SAN(2,CNN) is SAN with CNN as net-
work for question representation and 2 is number of atten-
tion layers as shown in figure 2. For DMN+ glove 300,
vector representation of words was initialized with 300 d
glove representation and for glove 100 with 100 d glove
representation. DMN+ Random init is method when word
representation was randomly initialized.

6.1.1 Visualizing Attention

To visualize what the model is locating in the regions that
are relevant to the potential answers we introduced a method
to visualize attention on the original image. The yellow
part of image is the attention region which is obtained us-
ing the attention weights. Attention image is created from
Attention wegiths by reverse traversing the pixels in snake
like fashion. Then this attention image is upsampled and
blurred. This is then overlayed on original image. Some
overlayed images are shown in figure 7 and 8. More images
are showing in appendix.

6.2. Cross Transfer Learning

ResNet performance in our experiments drop drastically
when resnet weights post VQA training are plugged back in
for image classification task on CIFAR-10 dataset.

Architecture Dataset pre-VQA post-VQA

Resnet-40 CIFAR-10 89.7 10.7

Table 2: Results for Cross-Transfer Learning Experiments

7. Conclusion
7.1. VQA

Visual question answering on V1.0 suffers from a strong
language prior. The drop in Yes/No category of accuracy
clearly indicates that when we moved to more balanced
dataset, language priors no longer help. This finding is in-
line with observation made by Goyal et al. on VQA v1.0
and v2.0 dataset.

Another interesting observation in our experiment was
that random word-embedding performed better than glob
300 initialization. This finding indicates that word vector
trained on context do not necessarily help in question repre-
sentation. It appears that architecture which derives atten-
tion on the question words as well (similar to Jiasen et al.)
could possibly be sensitive to word vector initialization.

7.2. Cross Transfer Learning

After weight/bias visualization of Resnet layers partici-
pating in VQA task we notice a shift in modal weight dis-
tribution.

Since conv/residual unit weight undergo such shift while
the final stage of resnet which did not participate in VQA
training stay at the original value, the Resnet weights over
all move to sub-optimal position in classification loss man-
ifold and hence we see this catastrophic loss in the classifi-
cation performance.
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Figure 7: Correctly Predicted

Figure 8: Incorrectly Predicted

7.3. Future Work

More extensive set of experiments are required to rectify
the sensitivity to the language prior (responsible for drop
in performance on v2.0 dataset). A better cross-transfer
learning setting could be training of VQA and classification
task similar to training of Generator and Discriminator
networks in Generative Adversarial Network paradigm.

Figure 9: Shift of Resnet-40 CONV Weights and Biases of
selected layers during VQA training
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8. Appendix: Results

Figure 10: Correctly Predicted

Figure 11: Incorrectly Predicted
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