
CS341 Final Report: Towards Real-time Detection and Camera Triggering

Yundong Zhang
yundong@stanford.edu

Haomin Peng
haomin@stanford.edu

Pan Hu
panhu@stanford.edu

Abstract

In this project, we aim at deploying a real-time object
detection system that operates at high FPS on resource-
constrained device such as Raspberry Pi and mobile
phones. Although many systems have proved their success
since the era of machine learning and neural network, most
of the evaluations are done with high-end CPU or GPU.
Nevertheless, real-world applications such as surveillance
pose strict constraints on the resources of the device: low-
power, small form factor, relatively good accuracy and fast
speed, making it hard to find a good trade-off when de-
signing the system. We present an object detection pipeline
which is capable of working smoothly under the situation of
traffic surveillance on Raspberry Pi 3 with only 1GB RAM
and 1.2GHz ARM CPU that costs merely $35.99.

1. Introduction

Monitoring cameras are used almost everywhere, and are
producing immense video stream everyday. Unfortunately,
only a small portion of these data are interesting to the users.
Let’s take traffic surveillance as example: only the part of
videos that actually has moving human or vehicles are use-
ful, therefore recording everything all day long would in-
evitably become a waste of storage, and would make going
through video a miserable work for searching and tracking.
To address this problem, object detection system could be
applied as a trigger to tell cameras when to record. How-
ever, most of the state-of-the-art algorithm have only been
tested on GPU with strong computation ability, and are not
likely to achieve the same speed and accuracy on less pow-
erful devices with micro-processors only. In fact, the need
for object detection algorithm to be applied on resource-
constrained device is highly in demand and not limited to
monitor camera (e.g. phones, sports watch). This serves as
the primary motivation for our team to find a different de-
tection system that is capable of working under embedded
devices.

Problem statement. Our goal is to design a system that
runs real-time object detection on Raspberry Pi 3. For-
mally, given a continuous camera live stream (with a res-

olution of 640*480), we want to successfully ’recognize’
(draw bounding box and label the object) the moving object
in a small amount of time. We choose Pi 3 as our platform
because it is a standard representative of embedded device,
and has been used widely as primary platform for devising
low-cost system.

The main challenge of this project lies in three aspects:
acceleration, compression and accurateness, where accu-
racy would be the trade-off for the first two aspects. We
evaluate the models based on three metrics: mAP metric,
detection speed (fps) and model size. As there is really no
published work on the similar scope (stream that starts from
a static frame), the final benchmark is under-defined at this
stage. But we would like to have a prototype that can suc-
cessfully perform real-time detection in about 5-10fps on
Pi, with decent accuracy.

We make a number of contributions in this report, in-
cluding:

• Test the performance of state of the art YOLO system
and its quantized version on Raspberry Pi device and
found that their speed is not eligible for real time use.

• Proposed a new object detection system with region
proposal based on temporal information and reaches
nearly 20X speed up and 15X less storage compared
to YOLO.

• Combined SSD system and MobileNet to propose
Mobile-Det, a detector version of MobileNet classi-
fier and preliminarily tested its performance, provide
a baseline for future improvement.

The paper is organized as following: we first introduce
related works that attempts to solve similar problem, then
explain our technical approach including network architec-
ture and detection pipeline. After that we present experi-
mental results and conclusion/discussion.

2. Related works
In this section we introduce some related works in ob-

ject detection system, design of CNN architecture and re-
cent works on model compression using quantization.

1

2.1. Object Detection System

Most previous CNN-based detection methods, for in-
stance, R-CNN[15], begins by first proposing various loca-
tions and scales in a test image to be the input to classifiers
of objects, then train and return the classifiers on each of
these proposed regions to detect an object. After classifica-
tion, there are usually post-processing to refine the bound-
ing boxes, and rescore the boxes based on other objects in
the scene. The improved versions of R-CNN, like Fast-
RCNN[7] and Faster-RCNN[17], used more strategies to
reduce computation of region proposal and reached a infer-
ence speed of 5 FPS on a K40 GPU device. Faster-RCNN
based methods have been reported to reach top accuracies
on KITTI[6], a dataset for object detection of traffic, but
none of them pushed real time inference speed to a new
level, which means there is still large room for improvement
in the aspect of speed if people want to apply such meth-
ods to real life. A YOLO[16] system, however, broke the
bottleneck by integrating region proposal and classification
into a single regression problem straight from image pix-
els to bounding box coordinates and class probabilities and
evaluate each full image with a single run. Since the whole
detection pipeline is a single network, it can be optimized
end-to-end directly on detection performance. YOLO is the
first framework to reach real time detection standard with
45 FPS (on GPU) and a mAP of 63.4% on VOC2007 [4],
but still has drawback in detecting smaller objects. This
was later remedied by SSD [14] through combining anchor
box proposal system of faster-RCNN and using multi-scale
features to do detection layer. SSD further improved mAP
on VOC2007 to 73.9% while maintaining similar speed as
YOLO.

2.2. Network Compression with CNN Design

Although the original YOLO system could run fast on
GPU, it’s based on GoogLeNet [18] and the model size
could be too huge to fit the RAM on device like Rasp-
berry Pi, therefore strategies to reduce model size is an-
other important aspect to be considered. An instinctive
approach proposed by [3] is to apply singular value de-
composition (SVD) to a pretrained CNN model. A simi-
lar method by [10] is Network Pruning, which begins by
replacing parameters of a pretrained model that are below
a certain threshold with zeros to form a sparse matrixwith
and then performs a few iterations of training on the sparse
CNN. Some of the recent researches also shows that care-
fully designed CNN structures could considerably reduce
model size while not compromising or even improving ac-
curacy. In SqueezeNet[12] structure, a fire module mi-
crostructure was raised and employed some of the design
intuition to cut the size of parameters of convolutional lay-
ers. A SqueezeNet consist of several fire modules was re-
ported to achieve 50X reduction in model size compared

to AlexNet [13], while meeting or exceeding the top-1 and
top-5 accuracy of AlexNet. A hybrid child of the thoughts
of both YOLO and SqueezeNet is Squeezedet[22]. It is
mainly based on YOLO but replace the detection layer of
YOLO with a designed structure called ConvDet layer and
use SqueezeNet as the backbone of CNN network. ConvDet
layer enables SqueezeDet to generate tens-of-thousands of
region proposals with much fewer model parameters com-
pared to YOLO, and the use of SqueezeNet further com-
pressed the size to 7.9 MB while maintaining a FPS of 57.

2.3. Model Compression With Quantization

Apart from redesigning CNN and cut the total number of
parameters, another way to achieve the goal of accelerating
inference process and reducing storage of CNN is to cut the
computation of multiplication in convolution layers.

Provided that the multiplication of float is much more
time consuming than integer, an instinct is to transform float
numbers to 8 bit integers. This could be implemented us-
ing shrinks by storing the min and max value of weights
for each layer, and then compressing each float value to an
eight-bit integer representing the closest real number in a
linear set of 256 within the range [21]. This method in the-
ory could reduce the model size by 75%. A support package
recently released by TensorFlow develop team enables the
8 bit quantization of tensors [9].

3. Technical approach
In this section we introduce our technical approach to the

object detection problem. We describe two major parts of
our solution in the following subsections, including network
architecture and processing pipeline.

3.1. Network architecture

The backbone architecture of our system is MobileNets
[11], a novel deep NN model proposed by Google, designed
specifically for mobile vision applications. We first intro-
duce the intuition behind MobileNets, then describes our
model structure.

3.1.1 Depthwise separable convolution

The main thing that makes MobileNets stand out is its use
of depthwise separable convolution (DSC) layer, as shown
in Fig. 1.

Depthwise separable convolution replaces the standard
convolution with a two-step operation: 1. depthwise con-
volution, where each DF xDF filter is only in charged of
filtering a single depth of the input feature map; 2. point-
wise convolution: a simple 1x1 convolution layer that is
used for combining channel information. DSC makes the
convolution operation much efficient meanwhile uses much

2

Depthwise Convolution Pointwise Convolution

Figure 1. Illustration of depth-wise separable convolution layer
structure [23]

less parameters. We highlight the parameters and computa-
tion cost at the following table:

Table 1. Parameter Size and Computation Cost in Depthwise Sep-
arable Convolution

Layer Parameter Size Computation Cost
Standard
Conv

F ×F ×C1×C2 F×F×DM×DM×
C1 × C2

Depthwise
Separable

F ×F ×C1+1×
1× C1 × C2

F×F×DM×DM×
C1+1×1×C1×C2

The reduction of computation cost is therefore:

F×F×DM×DM×C1+C1×C2×DN×DN

F×F×DM×DM×C1×C2×DN
=

1

N
+

1

F 2

(1)
And hence the parameter reduction:

F×F×C1+1×1×C1×C2

F×F×C1×C2
=

1

C2
+

1

F 2
(2)

Typically, in our setup, we use 3x3 convolution and the
saving of computation is about 8 to 9 times, so as the model
size. Nevertheless, this efficient operation does not sacrifice
accuracy a lot, as we can see in the Table 2.

The Intuition behind DSC: studies [2] have showed that
DSC can be treated as an extreme case of inception module,
where cross-channel correlations and spatial correlations is
completely decoupled, and hence can be mapped indepen-
dently. In fact, if we check the receptive field of the result-
ing feature maps after DSC, we see that it is the same as
standard convolution. The only difference is that DSC by
making a strong assumption as stated above, exploit param-
eter sharing and degree of freedom more efficiently.

3.1.2 Model Structure

We now demonstrate our network structure in Fig. 2, which
mainly consists of a series of DSC module. Each DSC mod-
ule contains is basically a DSC layer, with inserted RELU

and batch normalization operation between the depth-wise
and point-wise operations. Note that the first layer is just
the standard convolution. The last layer is an average pool-
ing followed by a fully-connected layer. In sum, the model
is similar to VGG-like network, removing the use of resid-
ual connections for speed improvements. In (b), we show
that some of the layers are fixed, this is used for transfer
learning, as we will discussed in section 5.1.

3X3 depthwise conv

batch norm

RELU

1X1 conv

RELU

batch norm

(a) (b)

224X224X3

112X112X32

112X112X64

7X7X512

7X7X512

1X1X512

module1

module8

module9

conv1
3X3X32

average pool

full connect

......

fixed layer

6 modules

Figure 2. (a) The structure of a typical DSC module; (b) Structure
of our MobileNets model

3.2. Detection Pipeline

In this subsection we introduce our detection pipeline,
which includes an initialization process, region proposal
and classification, as shown in Fig. 3. We explain each of
the three steps in the following subsections.

3.2.1 Reference Frame

We first configure camera as video stream. However, there
are several ways to generate reference frame:

• Delay two seconds to wait for the camera to stable,
and use the first frame as reference frame. Do not
update the reference frame. This is the most straight
forward method, but clearly suffering from the prob-
lem that the light condition will change overtime. The
background of the input frame will not align with the
reference frame, disturbing following region proposal
process.

3

Temporal detection
system: reference
frame and region

proposal

Unified detection
sytem: a single
neural network

Process
Process

Process

person

automobile

person

automobile

Video stream

Proposed regions

Pre-processing for
classification

Temporal detection
ouput result

Unified detection ouput result

Single picture

Figure 3. Annotated picture describing our experimental setup.

• An alternative method would be that we update ref-
erence periodically using the following rule: ri,j =
(1 − β)ri,j + βci,j where r is reference frame, c is
current input frame, and β is updating rate. The larger
the updating rate, the faster we update reference frame.
The problem of this method is that, if an object stays in
the field of view for long enough time, it will become
part of the background.

• Selective update. The method is very similar to the
one mentioned above. But instead of using every input
frame to update the reference frame, we only update
using input frames when there is no object in the input
frame. Still, this method may suffer from the problem
that there might be objects staying in the field of view
for a long time, making the update interval infinitely
long, although we can always update areas that do not
have object rather than the entire frame.

In our setup, we choose the selective update method for
picking and updating our reference frame, i.e. using mo-
mentum update only when there is no object in the current
frame.

3.2.2 Region proposal

We illustrate the process of region proposal using some ex-
ample inputs, shown in Fig. 4. The region proposal include
the following steps:

1. Get frame difference by subtracting current frame with
reference frame. The pixel-wise value is thus defined
as diffi,j = |inputi,j − refi,j |. The same thing ap-
plies for all three channels. The result is shown in
Fig. 9(c).

2. It is very common that there is slight offset between
the backgrounds of input frame and reference frame.
Since the offset is usually only a few pixels, we apply
a 2-D Gaussian filter with size of 21×21 to Fig. 9(c) to
smooth out the sharp lines caused by offset in images.
The result is shown in Fig. 4(d).

3. We then pass the Gaussian filtered difference frame
into a threshold filter. The pixel value is set to 255
if any of the RGB channel exceeds a certain threshold
(usually between 40 50), otherwise the pixel value is
set to 0. The result is shown in Fig. 4(e).

4. From Fig. 4(e) we could find that the thresholded
frame includes small areas caused by noise and camera
shake, which is not desired. To remove these small ar-
eas, we put the frame into an erosion filter. We choose
a filer size of 5×5, and repeat the process twice. From
Fig. 4(f) we could find the small areas are disappeared.

5. However, a side effect of erosion filter is that, the
boundary of target object also being eroded. From
Fig. 4(f) we could find that the left leg is separated
from the rest of the body. To compensate for the effect
of erode filter, we apply the reverse operation, dilate
filter to the frame with exactly the same kernel. The
result is shown in Fig. 4(g). By doing this we can con-
nect objects back to where they supposed to be con-
nected.

6. After all the filtering process we find contour on dif-
ference frame and construct rectangle bounding box
based on contour. We discard region that is overly
small, say 2000 square pixels (approximately 44*44
pixels). The result is shown in Fig. 4(h). It can cor-
rectly draw bounding box on a human.

The average time spend on region proposal is 83ms.

4

(a) Reference frame (b) Input frame (c) Difference frame (d) After Gaussian filter

(e) Thresholded difference frame (f) After Erosion filter (g) After Dilate filter (h) Output result

Figure 4. An illustration of our region proposal pipeline, from reference frame to detection output.

3.2.3 MobileNets Classifier

Now it’s time for our MobileNets to label each proposed
image, forwarded by the region proposal system. We pre-
process the current frame and generate multiple images by
zero-outing all but one objects each time using the input box
coordinates. As a result, we get the same number of images
as the detected boxes for each input frame, we then feed all
the images to the classifier to generate labels. Finally, We
take the classification output and combine them with the
bounding boxes, overlaying on the original frame.

Readers may be curious about why we do not use the
cropped bounding box directly as input to the classifier. The
reason is that the classifier is trained for a fixed size images,
while in practice small objects appear very often. If we up-
sample the objects, the resulting images might have too low
resolution to be recognized correctly. Another reason is that
we assume the background information is helpful for pre-
diction, hence we keep it.

3.3. Dataset and Preprocessing

Our image data is supplied by PASCAL VOC2012 de-
tection dataset [5]. The dataset consists of 20 classes, in-
cluding objects most commonly captured in traffic cameras
like bus, car, bicycle, motorcycle and person. The data has
been split into 50% for training/validation and 50% for test-
ing, with the distributions of images and objects by class
are approximately equal across the training/validation and
test sets. This comes to a training set of 5717 images and a
validation set of 5823 images.

Since we assumes that the input to the classifier in our
system only contains one target object, we preprocess pic-

tures with multiple objects to guarantee that each processed
image only contains one region of interest. We imple-
mented this step by first replacing the regions of all objects
in a image with mean value of the picture for 3 channels re-
spectively and then placing a single region back to it’s origi-
nal place, loop this for each region of interest and we would
generate a series of pictures with one object, as shown in
Fig. 5.

This step produced a training set of 13609 pictures and
validation set of 13841 pictures. We also resize each picture
to 224x224 pixels to ensure pictures are of the same size.

4. Mobile-Det

We also implement a detector version of MobileNet,
namely Mobile-Det, by combining MobileNet classifier and
Single Shot MultiBox Detector (SSD) framework [14]. The
reason we want to do this is to further analyze the benefit
of MobileNet model, and have a fair comparison between
the state-of-art detection model like VGG-based SSD and
YOLO. The details of SSD is massive and beyond the scope
of this project, so we will only have a brief introduction to
how it works in the following parts.

In short, SSD framework uses multiple feature layers as
classifiers, where each feature map is evaluated by a set
of different (aspect ratio) default boxes at each location in
a convolutional manner, and each classifier predicts class
scores and shape offset relative to the boxes. At training
time, a default box is considered to be predicting correctly
if its jaccard overlap with the ground truth box is larger than
the threshold (0.5). The loss is then measured by both the
confident score and localization score (Smooth L1 [8]). The

5

Figure 5. Data preprocessing by covering other region of interest

demonstration of the SSD model is shown in fig. 6:
The structure of Mobile-Det is similar to ssd-vgg-300:

the original SSD framework. The difference is that rather
than using VGG, now the backbone is MobileNets, and also
all the following added convolution is replaced with depth-
wise separable convolution.

The benefit of using SSD framework is evident: now we
have a unified model and is able to train end-to-end; we
do not rely on the reference frame and hence the temporal
information, expanding our application scenarios; it is also
more accurate in theory. However, the main issue is that, the
model becomes very slow, as a large amount of convolution
operations are added.

5. Experimental Results

In this section we describe some experimental results
about our system, including a brief description about our
experiment setup, some different methods we’ve tried and
their performance/statistics.

5.1. Transfer Learning of MobileNet

Our primary use case is detecting traffic objects, in-
cluding pedestrians, cars, bus and so on. Although there
is ImageNet pre-trained weights available online for Mo-
bileNets[ref], the model is unnecessarily large than our
need. There is also no class about people in ImageNet-1000
datasets. On the other hand, PASCAL VOC 2012 itself,
only contains about 5K images (even after pre-processing
we only have 15k). Hence, we need to use transfer learning
technique in order to train a high accuracy model.

The transfer learning process is rather simple: we ini-
tialize and fix the first 7 layers of weights based on the pre-
trained ImageNet model (see fig. 2), and train the rest of the
layers by back-propagation. Compared to the original Mo-
bileNets Model, we use less layers, based on the intuition
that now we have less classes. This helps us achieve a fast
inference speed, smaller model size while sacrifice little to
no accuracy. We call this ’truncated’ model as MobileNets-
Small.

Note that the model for our customized dataset is under-
optimized (i.e. we haven’t spent too much time on fine-
tuned it; hence a little more performance gain should be
expected)

Table 2. MobileNets Classifier Accuracy (ImageNet accuracy is
cited from the Google paper [11]

Model Dataset Accuracy
(Top-1)

MobileNets-Full ImageNet 70.5%
VGG16 ImageNet 71.5%
MobileNets-Full Customized VOC 69.8%
MobileNets-Small Customized VOC 67.6%

5.2. Description of setup and sample result

Our experimental setup is shown in Figure. 7: including
a Raspberry Pi V3 board, a 5 million pixel RGB camera, a
cooling fan and a 10 inch HDMI display. The Raspberry pi
is based on a 1.2GHz 64-bit quad-core ARMv8 CPU with
1GB of DRAM and 32GB SD card storage.

We naively transplant Tiny-Yolo-Voc to our setup and
test its performance. An example of detection result is
shown in Figure. 8. It correctly detects and locates a chair, a
person and a monitor (although there are actually two mon-
itors).

5.3. Detection Results and Model Comparison

In this section we compare the performance of several
different detection models, we use the state-of-art model
yolo2 as comparison. For the 8-bit quantization model, we
fully quantize both the weights and operation (i.e. matrix
multiplication are also done in 8-bit). Table 3 contains all
the results:

We can see from the table that the original full-version
yolo2 pretrained model even cannot fit in Pi with 1G mem-
ory, not to mention other micro-processors which typically
has smaller RAM. For tiny yolo2, which is going to be our
baseline model, it is able to run detection in 0.487fps. That
is to say, object movements can only be detected after 2s,
this is however unacceptable in real-world scenario, espe-
cially for our intended application–traffic.

For the models quantized using tensorflow graph-
transform tool, in theory, we should observe that both the
model size and speed get better. However, in the exper-
iment it does not perform well in terms of speed. There
are currently two major problems out here: 1. during in-
ference, the model needs to re-evaluate the maximum and
minimum value of the input at each layer, which typi-
cally slows the model; 2. as documented by the tensor-

6

M
ob

ile
N

et
Extra Feature Layers

300x300
Image

MobileNet
through the last DSC module

Layer_12

38

38

512

DSC-3x3x1024
conv1x1x1024

SSD_1

19

19
10

10

SSD_2
SSD_3

5

5

3
3

conv1x1x256
DSC-3x3x512

conv1x1x128
DSC-3x3x256

conv1x1x128
DSC-3x3x256

1
1

conv1x1x128
conv3x3x256

Classifier:
conv3x3x(4x(classes+4))

Classifier:
conv3x3x(6x(classes+4))

conv3x3x(4x(classes+4))

D
et

ec
tio

n:
87

32
 p

er
 c

la
ss

N
on

-M
ax

im
um

 S
up

pr
es

si
on

Figure 6. Mobile-Det: SSD-based detection with MobileNet as backbone, modified based on [14]

Table 3. Comparison of different models (Note: the result of Mobile-Det is still preliminary)
Type of model Size on disk Detection speed mAP
Yolo2-full 269.9MB Out of memory 76.8
Yolo2-tiny 60.5MB 0.487fps 57.1
Yolo2-full eight-bit 64.4MB 0.153fps 61.3
Yolo2-tiny eight-bit 15.2MB 0.343fps 49.8
Temporal Detection 4.4MB 2.566fps *
Mobile-Det 27.5MB 0.712fps 41.9
*Under-defined, please see section 5.4

Figure 7. Annotated picture describing our experimental setup.

flow team, the quantized-version operations are not well-
optimized yet, and hence unless you are using 8-bit instruc-
tion set/machine, the eight-bit model will even be slower.
Despite that, we could observe that we don’t lose much
accuracy after quantizing the model of both tiny and full
yolo2, this shows quantization is a tool of strong potential
and could be used for deeper compression following any
network compression strategies.

For our proposed Temporal Detection model, we can see

Figure 8. Example of detection result.

that the inference speed is increased by 5x, compared to the
fastest tiny yolo2. Meanwhile, the uncompressed model is
almost 20x smaller than tiny-yolo, 5x smaller than its 8-bit
quantized version. This is well expected since our region
proposal is based on frame difference and therefore could
takes use of temporal correlation between frames. This
proposing method also well served the purpose of monitor
camera since most users are only concerned about moving
objects in frames and are not interested in trees or other

7

(a) Video1 (b) Video2 (c) Video3

Figure 9. Sample images in the VISOR video dataset.

environment objects in background. Compared to the re-
gion proposal of YOLO-like system which scans through
each region of every frame and aims to label everything,
our system would undoubtedly run much faster. However,
the model suffers from low mAP and are highly sensitive to
the use case, and hence needs more fine-tuned and further
improvements on refining the differential region proposal
methods and post-processing of bounding boxes.

Finally, we have a preliminary result of Mobile-Det,
which achieves both smaller size and fast inference speed
compared to tiny-yolo. We call this preliminary because un-
fortunately we ran out of time training the model on more
datasets. The reported results of yolo2 are trained from both
VOC2007 and VOC2012, with carefully finetuning, while
our Mobile-Det just finished a preliminary training (haven’t
done hyper-parameters tuning) on VOC2007. The training
is slow, the model takes two days to start from an mAP of 0
to 41.9%. Nevertheless, based on the current results, we are
confident to achieve a mAP higher than 50%, while gaining
a 1.5x increase of inference speed compared to tiny-yolo.
Unfortunately it is still much slower than the temporal de-
tection methods.

5.4. Benchmark of region proposal in temporal de-
tection

We use three videos from VISOR [20] to test the accu-
racy of our region proposal. We choose this dataset because
the camera in the selected dataset is stationary and the sce-
nario is well-suitable for our target application. Three sam-
ple videos are shown in Fig. 9. One challenge we’re facing
in working with the dataset is that, it is required to regis-
ter an account to download the label data. To skip the time
waiting for the registration to get approved, we use Yolo2
as our baseline.

The mAP accuracy of our region proposal is shown in
Table. 4.

Table 4. mAP accuracy of region proposal for three video clips
Video 1 Video 2 Video 3 Combined

No. of frames 662 425 919 2006
mAP 0.48 0.72 0.50 0.54

6. Conclusion
In this project, we tested a variety of detection mod-

els, including the state-of-art YOLO2, and two our newly
proposed models: Temporal Detection and Mobile-Det.
We conclude that the current object detection methods, al-
though accurate, is far from being able to be deployed in
real-world applications due to large model size and slow
speed. Our work of Mobile-Det shows that the combination
of SSD and MobileNet provides a new feasible and promis-
ing insight on seeking a faster detection framework. Finally,
we present the power of temporal information and shows
differential based region proposal can drastically increase
the detection speed.

7. Future work
There are a few aspects that could potentially improve

the performance but remains to be implemented due to lim-
ited time, including:

• Implement an efficient inference module of 8bit float
in C++ to better take advantage of the speed up of
quantization to inference step on small device.

• Try to combine designed CNN modules like MobileNe
t module and fire module with other real-time standard
detection frameworks.

8. Acknowledgement
We thank our project TA Han Song for proving insightful

discussions on model compression.
Github repo we’ve referenced include: [1] [19] [11] [9]
The repository above has all been linked in the reference

section.

8

References
[1] balancap. A tensorflow implementation of google’s

mobilenets: Efficient convolutional neural networks for
mobile vision applications. https://github.com/
balancap/SSD-Tensorflow.

[2] F. Chollet. Xception: Deep learning with depthwise separa-
ble convolutions. arXiv preprint arXiv:1610.02357, 2016.

[3] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-
gus. Exploiting linear structure within convolutional net-
works for efficient evaluation. In Advances in Neural In-
formation Processing Systems, pages 1269–1277, 2014.

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. International Journal of Robotics
Research (IJRR), 2013.

[7] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1440–1448,
2015.

[8] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1440–1448,
2015.

[9] Google. Tensorflow Graph Transform Tool. https:
//github.com/tensorflow/tensorflow/
blob/master/tensorflow/tools/graph_
transforms/README.md.

[10] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In Advances in
Neural Information Processing Systems, pages 1135–1143,
2015.

[11] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[12] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mb model size. CoRR,
abs/1602.07360, 2016.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-
Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.
In European Conference on Computer Vision, pages 21–37.
Springer, 2016.

[15] T. D. R. Girshick, J. Donahue and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. Computer Vision and Pattern Recognition
(CVPR),2014, 2014.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 779–788, 2016.

[17] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages
91–99, 2015.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015.

[19] thtrieu. Translate darknet to tensorflow. load trained weights,
retrain/fine-tune using tensorflow, export constant graph def
to mobile devices. https://github.com/thtrieu/
darkflow.

[20] VISOR. Visor video dataset. http://imagelab.ing.
unimore.it/visor/video_videosInCategory.
asp?idcategory=3.

[21] P. Warden. How to Quantize Neural Networks with Ten-
sorflow. https://petewarden.com/2016/05/03/
how-to-quantize-neural-networks-with-tensorflow/.

[22] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet:
Unified, small, low power fully convolutional neural net-
works for real-time object detection for autonomous driving.
arXiv preprint arXiv:1612.01051, 2016.

[23] Zehaos. A tensorflow implementation of google’s mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. https://github.com/Zehaos/
MobileNet.

9

https://github.com/balancap/SSD-Tensorflow
https://github.com/balancap/SSD-Tensorflow
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md
https://github.com/thtrieu/darkflow
https://github.com/thtrieu/darkflow
http://imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=3
http://imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=3
http://imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=3
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/
https://github.com/Zehaos/MobileNet
https://github.com/Zehaos/MobileNet

