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Abstract

In recent years, open-ended visual question answering
has been an area of active research. In this work, we
present our exploration of two state-of-art architectures in-
cluding the Multi-modal Compact Bi-linear Pooling (MCB)
and Dynamic Memory Network (DMN) and analysis of the
result and performance of the models. We found both mod-
els to perform comparably on the VQA v2.0 dataset based
on predicted answer accuracy. We also qualitatively ana-
lyzed how the models capture the interaction between im-
ages and questions by visualizing the attention maps and
saliency maps of our models.

1. Introduction

The simple task of answering a question about a picture
is immediately relatable to anyone who has ever had to iden-
tify a giraffe in a vacation photo or describe the color of a
dress in a family portrait. Visual Question and Answering
(VQA) defined in this natural form of answering an open-
ended question about a given image has been a notoriously
difficult problem to tackle because it’s at the intersection
of two “AI-complete” tasks - computer vision and natural
language processing. However, it recently emerged as an
exciting area of research in the deep learning community,
as neural networks have made tremendous strides in image
and text-based tasks, specifically due to the rise of recurrent
neural networks (RNNs) and convolution neural networks
(CNNs).

The heart of VQA’s technical challenge lies in compre-
hension of information from two different modalities: text
and image. Research efforts have been channeled into the
development of datasets that are effective in testing this as-
pect and models that are effective in combining visual and
language information. For example, the recent release of the
VQA v2.0 balances the dataset by doubling the number of
image-question pairs. And, recent advances in performance

Figure 1: An example of the VQA task from visualqa.
org

have been driven by methods that use bi-linear pooling and
co-attention to better capture the complex associations be-
tween the two different modalities.

The visual question answering task means providing
an accurate natural language answer to a natural language
question about an image. While the VQA challenge in-
cludes two other varieties: multiple choice questions and vi-
sual grounding, this project will focus on open-ended ques-
tion answering, mimicking real-world situations [1]. An ex-
ample of the visual questioning and answer task is shown in
fig. 1.

In our project, we explore using CNN and RNN archi-
tectures involving attention. The remainder of the report
will discuss briefly the current literature, describe the im-
plementation of two architectures using bi-linear pooling
and co-attention, and finally analyze the performance and
results of these models.

2. Related Work
To inform our approach to visual question answering,

we did a survey of architectures that have been proposed.
Here, we present a summary of two of the best perform-
ing approaches to tackle the challenge of incorporating the
bi-modal nature of VQA. The first approach is the use of
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Figure 2: Multi-modal Compact Bi-linear Pooling (MCB)
[3]

bilinear pooling [6, 3], and the second approach is the use
of memory and attention [11, 7].

Bi-linear Pooling While bilinear pooling has been pro-
posed as a technique for joining the representation of the
two modalities that is more expressive than current ap-
proaches that rely on concatenating vectors or applying
element-wise sum or product, it has been recently demon-
strated to be computationally efficient and out-perform
state-of-art. Fukui et. al [3] proposed Multimodal Com-
pact Bilinear Pooling (MCB) to compress bilinear pooling
that computes the outer product between the text and image
vector representations for a single modality. MCB approx-
imates bilinear pooling by randomly projecting the image
and text representation to a higher dimensional space and
then convolving both vectors efficiently by using element-
wise product in Fast Fourier Transform space. What’s ex-
citing to us about MCB is that any attention-based model
potentially stand to benefit by incorporating MCB into its
architecture. An illustration of the MCB algorithm from the
Fukui paper [3] is shown in fig. 2. Their model, which is
the state-of-the-art, was able to achieve 66.9% accuracy in
the open-ended 2016 VQA challenge.

Memory and Attention Memory and attention-based
models relies on the hypothesis that in order to answer a
question correctly the model has to understand where in the
image to “look” or which words of the questions to “lis-
ten”. A number of the attention-based models have been
proposed that have perform close to state-of-art, including
the Dynamic Memory Networks (DMN) model proposed
by Xiong et. al. and Hierachical Co-attention (HiCoAtt)
model proposed by Lu et. al. DMN proposes an episodic
memory module that allows the models to focus attention
on a subset of facts from the image input module. HiCoAtt
model proposed an hierarchical architecture that co-attends
to the image and question at the word, phrase, and question
level.

3. Method
Inspired by the works in machine translation including

Cho et. al [2] and Sutskever et. al. [10] that used a
sequence-to-sequence encoder and decoder architecture to
great success, we also aim to tackle the visual question and
answering task using an encoding and decoding framework,
as detailed in the following sections.

3.1. Encoding Architectures

We experimented with two different state-of-art archi-
tectures for encoding the multi-modal relationships be-
tween visual and textual information, including Multi-
Modal Compact Bi-linear Pooling (MCB) proposed by
Fukui et. al. [3] and Dynamic Memory Network proposed
by Xiong et. al. [11].

3.1.1 Multi-Modal Compact Bi-linear Pooling (MCB)

This model extracts representations of the image and the
questions, pools the vectors using MCB. The overall model
architecture is shown in the figure 3.

We extracted image features with dimensions 14× 14×
512 using the last layer of the VGG-16 network pre-trained
on the ImageNet dataset [9].

Input questions are tokenized into words, and the word
vector representation is obtained using the Glove6B em-
beddings pre-trained on Wikipedia 2014 and Gigaword 5
dataset [8]. The embeddings are passed through a tanh layer
and then feed into a GRU to obtain a 512-D vector repre-
sentation of the question. The question vector is tiled into
dimensions 14× 14× 512.

The image features and tiled question vectors are then
passed into a MCB layer to obtain a 14 × 14 × 1024
tensor which is used to compute attention values. Soft-
attention has shown to be an effective mechanism to in-
corporate salient features of the visual representation into
image-captioning models [12], and soft-attention is easily
integrated into our architecture using MCB.

The 14× 14× 1024 tensor after MCB pooling is passed
through a convolutional layer with relu activation to obtain
an intermediate 14× 14× 512 tensor which is then passed
through another convolutional layer to produce 14 × 14
scores. A softmax layer is then used to output the 14 × 14
attention weights for different regions of the visual repre-
sentation. A weighted sum of the image feature vectors
across the 14×14 regions is taken using the attention map to
produce an attended visual representation that is then fused
with the textual representation on a image and sentence
level using another MCB pooling layer to produce a 1024-
D vector which is the combined encoding of our image and
question. Predicting attention map using MCB is demon-
strated to be very effective in capturing saliency of inter-
actions between visual and textual information as shown in
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Figure 3: Multi-modal Compact Bi-linear Pooling Architecture (MCB)

the paper by Fukui et al. [3].

3.1.2 Dynamic Memory Network (DMN)

The dynamic memory network was introduced by Xiong
et. al [11] as a general architecture consisting of a memory
and input module for visual question and answering. The
overall architecture is shown in figure 4.

The input module as shown in fig. 4 extracts image fea-
tures with dimensions 14 × 14 × 512 in the same way as
described in the MCB section. These features are reshaped
into a sequence of 196 vectors for each of the image regions.
A fully connected layer with tanh activation is used to ob-
tain sequences inputs which are passed into a bidirectional
GRU to add global information. The outputs of the forward
and backward GRUs are summed to obtain a sequence of
facts, F = [f1, . . . , fn], which contain global information
pertaining to different image regions. A vector represen-
taion of our question, q, is obtained by passing the question
embedding sequence into a GRU.

The episodic memory module as shown in fig. 4 learns to
focus attention on a subset of the global-aware input “facts”
F = [f1, . . . , fn] by associating a scalar value the atten-
tion gate gti with each fact fi during pass t, as shown in the
formula below from Xiong et. al. [11]:

zti = [fi · q; fi ·mt−1; |fi − q|; |fi −mt−1]

Zt
i =W (2) tanh(W (1)zt

i+b(1)) + b(2)

gti =
exp(Zt

i )∑Mi

k=1 exp(Z
t
k)

where ; represents vector concatenation, | · | represents
element-wise absolute value, and · represents element-wise
multiplication.

Attention Mechanism To incorporate this attention, we
experimented with both soft attention and attention based
GRU. For soft attention, the context vector for pass t over
the image facts is calculated as ct =

∑N
i=1 g

t
ifi. The at-

tention based GRU method obtains context vector by pass-
ing the sequence F into a modified GRU unit where the
update gate is replaced with the attention. That is, hi =
AttnGRU(xi, hi−1) is updated by:

ri = σ(W (r)xi + U (r)hi−1 + b(r))

h̃i = tanh(Wxi + ri ◦ Uhi−1 + b(h))

hi = gti ◦ h̃i + (1− gti) ◦ hi−1

The memory of our system is initialized with q. That is,
m0 = q. The memory is updated as follows:

mt = ReLU(W t[mt−1; ct; q] + b)

The final memory vector(m2) is taken as the combined en-
coding of the image and question.
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Figure 4: Dynamic Memory Network Architecture (DMN)

3.2. Decoding Architecture

The models we implemented are designed to predict an
answer from a set of possible answers. In order to get the
candidate answers, we counted the number of times each
answer occurred in our dataset and limited our candidates
to the answers that occurred at least 99 times. Therefore,
to decode, we take in the combined vector representation of
an image and its corresponding question to compute class
scores using a fully-connect layer and softmax function. Fi-
nally, the cross entropy loss with logits was used for train-
ing to perform a 3003 way classification over our candidate
answers.

4. Dataset
Researchers have proposed several rich datasets, the

most notable of which is visualqa.org including
more than 200,000 COCO images, 600,000 questions, and
6,000,000 answers. The latest release of the dataset in April
2017 v2.0 balances the dataset to counteract against mod-
els exploiting the inherent structure in language rather than
learning visual modalities. For example, v2.0 collected ap-
proximately 195K complementary images for trains [4]. In
total, v2.0 doubled the number of image-question pairs, so
that every question is associated with not just a single im-
age but rather a pair of similar images that results in two
different answers to the same question [13].

4.1. Data Preprocessing

A summary of the specific COCO dataset we are using
is shown in Table 1

Training Validation Testing
Number of images 82,783 40,504 81,434
Number of questions 443,757 214,354 447,793
Number of answers 4,437,570 2,143,540 -

Table 1: Dataset summary

The testing answers have not been made public. There-
fore, we split the validation set into validation and testing
tests. There are about 5.4 questions per image, 10 ground
truth answers per question. Question types include binary
yes/no answers, numerical ones, and open-ended ones.

The maximum question token length is 25 and the max-
imum answer token length is 30. Figures 5a and 5b show
the distributions of question and answer token lengths.

We preprocessed the images of size m×n by either cen-
trally cropping the image or padding it evenly with zeros to
size (min(m,n),min(m,n)). The resulting images were
then resized to 224 by 224 pixels using bilinear interpola-
tion. Additionally, we normalized the images by subtracting
the VGG16 mean from all images.

5. Experiments and Results

5.1. Experiment Setup

The training of each model presents its own set of chal-
lenges, but hyper-parameter searching of both architecture-
specific and optimization-related hyper-parameters were the
most important factors during our training process.
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(a) Histogram of question lengths (b) Histogram of answer lengths

Figure 5: Histogram of question and answer length

Architecture-specific Hyper-Parameters In addition to
the optimization hyper-parameters such as learning rate,
both the MCB and DMN have hyper-parameters associated
with the architecture. For example, the output dimensional-
ity of the MCB feature determines how well it approximates
the bilinear feature. Based on the paper from Fukui et. al.
[3], while a 16,000-D vector yields the highest accuracy, a
smaller vector such as a 1,024-D vector that performs only
1.5% worse is used to boost training time during experi-
ments. Additionally, the performance of the DMN model
depends on the size of the input global facts, the size of the
memory vector and the number of passes in the episodic
memory module. Because the DMN paper [11] does not
provide guidance on these parameters and our limited com-
puting resources and time, we decided to use a 200-D vec-
tor for input “facts”, 200-D vector for memory module, and
two passes of episodic memory module to increase training
speed.

Optimization Hyper-Parameters We experimented with
different optimization solvers, batch size, dropout probabil-
ity, learning rate, learning rate decay rate, and gradient clip-
ping. We found the most success using the Adam optimizer,
which was demonstrated to be an efficient and adaptive
learning algorithm by Kingma [5]. Due to time-constraint,
we were unable to conduct a thorough search of the remain-
ing hyper-parameters. Instead relying on best-practices, we
used a batch size of 64 samples, an initial learning rate about
1e−3 to 5e−4, and a learning rate decay rate of 0.99 to bal-
ance training speed with training accuracy. Finally, gradient
was clipped at 10 to prevent exploding gradient problem for
RNN-intensive architectures such as DMN.

5.2. Evaluation Metrics

We used the official evaluation benchmark as follows:

Accuracy = min{ # of humans providing the answer
3

, 1}

In other words, an answer is considered 100% accurate
only if at least 3 people provide that exact answer. In order
to be consistent with human accuracies, machine accuracies
are averaged over all 10 choose 9 sets of human annotators,
to be robust to variability in the phrasing of human answers.

5.3. Analysis and Evaluation

To get a sense of the difficulty of the VQA challenge and
a better handle on the dataset, we implemented two baseline
models, as described in the following.

1. Prior Baseline: We implemented a baseline which al-
ways predicts the most common answer in the training
data. The test accuracy is about 24.7%, which is in-line
with what is discussed in the literature.

2. Language-based Baseline: We also developed a
language-only baseline that only uses the question but
not the image as input to predict the answer. The model
uses a Glove6B pre-trained embedding that encodes
each question word which is then fed into a GRU. The
final output hidden state representation of the question
is fed through a fully-connected layer and classified
using a softmax loss function. The baseline test accu-
racy is around 25.9%. We did not spend much time
optimizing this model.

Comparison to State-of-the-Art Table 2 shows the re-
sults of the state-of-the-art on the VQA v2.0 dataset along
with our single best models of the MCB and DMN archi-
tecture. The baseline performances are also included for
illustration.
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Figure 6: Examples of qualitative results of attention for VQA using the MCB model. The original images are shown on the
left, and the attention map or saliency map is shown on the right. The white regions are the most active areas. The predicted
answer of a question asked is shown below every image, and the answer is colored green if right and red if wrong.

Models/Question Types Y/N Num Other All
Prior Baseline (All “No”) 65.1% 0.003% 0.006% 24.7%
Language Only Model - - - 25.9%
MCB + GloveB + Attention 50.7% 20.7% 16.8% 32.2%
DMN+ 53.9% 25.1% 14.1% 33.1%
2016 VQA Winner Benchmark 78.8% 38.2% 53.4% 62.3%

Table 2: Open-ended Question results on the VQA dataset
compared with baseline and state-of-the-art

As results table shows, DMN+ model performs over-
all comparably to the MCB model with attention, but both
models perform much better than the baselines. While
MCB performs slightly better on the “other” question types,
DMN+ performs slightly better in yes/no and number types
of questions. We hypothesize that MCB out-performs
DMN+ at “other” questions because as the original authors
demonstrated answering “other” questions requires more
understanding of the salient interactions between visual and
textual information than yes/no and number questions. On
the other hand, relying more on the inherent structure in lan-
guage, DMN+ uses the memory and attention architecture
to out-perform the MCB model in the “yes/no” and “num-
ber” questions. Finally, the performance of the two models
is only about half of the state-of-the-art accuracy which is
the MCB implementation from Fukui et. al. in 2016 [3],
because we need more time to fully train the models.

5.4. Attention Map and Answer Visualization

We visualized the attention maps and the predicted an-
swers to qualitatively understand how the MCB model pre-
dicts answers and how it places attention on an image de-
pending on the question asked. The results are shown in fig
6.

As shown, the model is able to place attention on dif-
ferent parts of an image depending on the question. This
is encouraging, as it strongly suggests that model is captur-
ing the interaction between visual and textual information.
For example, the model places attention on the front of the
truck when asked “What color is the truck?” and places
attention on the back of the truck when asked “Is there any-
thing loaded on the truck?”. Furthermore, When the model
predicts the wrong answer, the attention is focused on the
wrong part of the image. For example, when the question
is “What is the man holding in his hand?”. The attention is
more focused on the keyboard. This suggests the improv-
ing attention placing is key to improving the overall per-
formance of the model, and given more time to train this
model, the attention map would improve significantly.

In addition to capturing the interaction between visual
and textual information via attention, the model also seems
to capture the semantic information embedded in a question
as the model seem to be able to predict the right type of
answer depending on the type of question asked. For exam-
ple, the model predicts a number when the question is “how
many ...?” and yes or no when the question is “Is there ..”.

6



However, at this incomplete stage of training, it’s hard to
judge qualitatively whether the model captured more infor-
mation from the inherent structure in the language or the
interaction between image and question.

6. Conclusion
In this project, we implemented and trained two differ-

ent state-of-the-art architectures for visual question and an-
swering. While the models were not able to reach state-
of-the-art accuracy due to time-constraints during train-
ing, they already significantly out-performed the baselines
and demonstrated uncanny comprehension of visual and
textual information, as shown in our result visualizations.
The code to replicate our experiment and implementation
is available at https://github.com/jejekunmi/
knf_vqa/tree/master.

This projects shows there is still plenty of rooms for im-
provement for developing novel architecture to better cap-
ture the ineraction between query phrasing representation
and visual representations. For example, we can combine
MCB with DMN by substituting the attention mechanism
of the DMN architecture with a MCB layer. Additonally,
we may also explore models that generate answers using a
decoding layer for example with an additional RNN layer
similar to what is done in machine translation or image cap-
tioning applications.

References
[1] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L.

Zitnick, and D. Parikh. VQA: visual question answering.
CoRR, abs/1505.00468, 2015.

[2] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations
using RNN encoder-decoder for statistical machine transla-
tion. CoRR, abs/1406.1078, 2014.

[3] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell,
and M. Rohrbach. Multimodal compact bilinear pooling
for visual question answering and visual grounding. CoRR,
abs/1606.01847, 2016.

[4] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and
D. Parikh. Making the V in VQA matter: Elevating the role
of image understanding in visual question answering. CoRR,
abs/1612.00837, 2016.

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[6] T. Lin, A. Roy Chowdhury, and S. Maji. Bilinear
CNN models for fine-grained visual recognition. CoRR,
abs/1504.07889, 2015.

[7] J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical
question-image co-attention for visual question answering.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 29, pages 289–297. Curran Associates, Inc.,
2016.

[8] J. Pennington, R. Socher, and C. D. Manning. Glove: Global
vectors for word representation. In EMNLP, volume 14,
pages 1532–1543, 2014.

[9] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[10] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to se-
quence learning with neural networks. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Process-
ing Systems 27, pages 3104–3112. Curran Associates, Inc.,
2014.

[11] C. Xiong, S. Merity, and R. Socher. Dynamic memory net-
works for visual and textual question answering. CoRR,
abs/1603.01417, 2016.

[12] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhut-
dinov, R. S. Zemel, and Y. Bengio. Show, attend and
tell: Neural image caption generation with visual attention.
CoRR, abs/1502.03044, 2015.

[13] P. Zhang, Y. Goyal, D. Summers-Stay, D. Batra, and
D. Parikh. Yin and yang: Balancing and answering binary
visual questions. CoRR, abs/1511.05099, 2015.

7. Code References
• https://github.com/ronghanghu/
tensorflow_compact_bilinear_pooling

• https://github.com/shmsw25/
mcb-model-for-vqa

• https://github.com/therne/
dmn-tensorflow
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