
Applying NLP Deep Learning Ideas to Image Classification

Gary Ren
SCPD Student at Stanford University

Applied Scientist at Microsoft
garyren@stanford.edu, gren@microsoft.com

Abstract

NLP deep learning models have had great success in re-
cent years by using word embeddings, RNNs, and attention
mechanism. This paper presents several models that lever-
age these ideas together with CNNs for the task of multi-
label image classification. Some of these models produced
state of the art results on the MS-COCO dataset, demon-
strating the benefit of leveraging these NLP deep learning
ideas, which was also confirmed by further analysis of the
results.

1. Introduction
Image classification is the task of classifying images

given a set of discrete labels, a core task in computer vision
with tons of applications. Some of the challenges of im-
age classification include viewpoint variation, illumination
variation, deformation, occlusion, background clutter, and
intraclass variation. There are several image classification
datasets and in recent years, novel deep learning (specifi-
cally convolutional neural network) models have continu-
ously achieved new state of the art results on these datasets.
This paper presents attempts at further pushing the state of
the art in image classification by borrowing ideas from NLP
deep learning techniques.

1.1. Multi-label image classification

Traditionally, image classification has focused on assign-
ing a single class to each image. However, in many real
world images, there are multiple different objects in an im-
age and it is important to be able to identify all the different
objects. Therefore, this project focused on the task of multi-
label image classification. Specifically, given an input im-
age, the goal is to output a list of all the different classes
that appear in that image.

1.2. Deep learning for NLP

Besides computer vision, NLP is another area where
deep learning has led to great progress in recent years.

The first step in most NLP deep learning models is to
convert the words into vector representations that can be
passed as input to a neural network. These vector represen-
tations are commonly known as word embeddings, and they
capture the semantic meaning of words [10]. For example,
semantically similar words will be close together in the vec-
tor space. Depending on the NLP task/model, the word em-
beddings are either: 1) set to pretrained embeddings, 2) ini-
tialized to pretrained embeddings but made trainable so that
they can be shifted as necessary, or 3) trained from scratch.

Similar to how convolutional neural networks (CNNs) is
the most common fundamental architecture used for com-
puter vision, recurrent neural networks (RNNs) is the most
common architecture for NLP. RNN cells such as the Gated
Recurrent Unit (GRU) [4] and Long Short Term Memory
(LSTM) [16] are commonly used to help maintain informa-
tion from previous time steps and improve gradient flow.

Another popular technique used in NLP is the attention
mechanism, which basically allows RNN models to more
directly look at multiple previous time steps instead of just
the one previous time step. The attention is computed over
multiple previous time steps via some scoring function, and
can be used to augment the outputs from RNNs [18] or di-
rectly used at the output layer to ”point” to a previous time
step [2].

Word embeddings, RNNs, and attention are the three
ideas that are leveraged for this project.

2. Related Work
The following subsections will go over the existing ap-

plications of word embeddings, RNNs, and attention in
computer vision.

2.1. Word embeddings

For the tasks of image captioning, image question an-
swering, and other computer vision tasks where the output
is a sequence of words, word embeddings are often used for
generating the output sequences. For image classification,
there have been just a few applications of word embeddings.
Wang et al. used word embeddings for multi-label image

1



classification [5]. They leveraged word embeddings and
RNNs to capture the co-occurrence dependencies between
labels (e.g. ”sky” and ”cloud” often appear together). Akata
et al. used word embeddings for zero shot image classifica-
tion (where some classes don’t have any labeled samples in
training set) [13]. They built upon the work of attributed
based classification and used Word2Vec to help learn the
relationships between classes, and also used the idea of em-
beddings by creating vector representations of the attributes.

2.2. RNNs

For terminology, let’s consider deep learning models to
have two main components: 1) an encoder that takes the in-
put and encodes it as some hidden state, and 2) a decoder
that takes the encoder output and makes predictions. Sim-
ilar to word embeddings, RNNs have been used in the de-
coder for computer vision tasks where the output is a se-
quence of words. As mentioned earlier, Wang et al. used
RNNs to generate multi-label image classifications. The
model presented by Xu et al. [7] is an example of RNNs
used for image captioning, and the model by Zhu et al. [12]
is an example of RNNs used for image question answering.

However, I was not able to find examples of RNNs be-
ing directly used in the encoder of computer vision mod-
els. The closest existing work are image classification mod-
els that leverages the same idea of improving gradient flow.
The most well known example is residual net (ResNet) [6].
ResNet adds shortcuts between CNN layers so that infor-
mation from previous layers is directly passed and the later
layers just have to learn the residual information. This also
helps the gradient to flow back to lower layers, similar to
in RNNs. Another example is the work by Srivasta et al.,
which specifically stated that they drew inspiration from
LSTMs for the highway networks that they implemented
[22]. Highway networks add a transform gate and carry gate
to each layer. The transform gate determines how much of
the final output of that layer is produced by transforming the
input while the carry gate determines how much is produced
by carrying the input.

2.3. Attention

Attention has been utilized in computer vision models
for attending to specific areas in the input image. The im-
age captioning model by Xu et al. [7] and the image ques-
tion answering model by Zhu et al. [12] both obtained im-
provements by adding spatial attention. A similar idea to
attention was used by GoogLeNet [3], which added aux-
iliary output layers at lower layers, in some sense adding
attention to the lower layers, allowing the model to directly
look at previous layers for classification.

3. Methods
3.1. Image-label joint embedding

I first implemented the model presented by Wang et al.
[5] for multi-label image classification, which uses a com-
bination of CNN and RNN. The CNN used is the VGG16
model [21] pretrained on ImageNet. The RNN is the de-
coder that outputs the predicted labels one at a time. A
RNN is used because the hypothesis is that the labels for
a given image have co-occurrence dependency, e.g. if a pic-
ture contains a keyboard, it likely also contains a mouse.
LSTMs [16] are used and the input at each step is the word
embedding of the previous predicted label. Note that during
training, the input at each step is the word embedding of the
previous correct label. This is so that the model can still
learn the dependency between the label at t and t − 1 even
if the prediction for t − 1 was incorrect. The output of the
LSTM cell and the output of the CNN are both projected to
the same dimension as the label embeddings and summed
together to form an image-label joint embedding:

xt = tanh(htWh + IWI) (1)

ht is the output of the LSTM cell at time t and I is the out-
put of the CNN. The projection WII replaced the final fully
connected layer of VGG16, and therefore needed to be re-
trained. Note that this equation (and subsequent equations
in this paper) is based on batch major inputs and outputs.
The intuition behind creating a joint embedding is that by
using this embedding for prediction, the model is predict-
ing labels that are conditioned on both the previous labels
and the image, allowing the model to capture both the label
dependencies and the image-label relevance.

This joint embedding is compared with each label em-
bedding by computing the distance:

st = xtE
T (2)

The predicted label probabilities is just the softmax of these
distance scores. Note that vectors that are closer together
will have larger dot products, and therefore larger distance
scores and larger label probability. The loss function is
cross entropy loss on the label probabilities. A high level
view of the model architecture is shown in figure 1.

3.2. CNN as initialization

While the image-label joint embedding model considers
both the previously predicted labels and the image when
making each prediction, the representation of the image that
it uses is the same at each time step. This is not ideal be-
cause different image features might be important when pre-
dicting different labels, so having different representations
of the image at each time step might help with predicting
the correct label at each time step. In other words, the image

2



Figure 1. Image-label joint embedding

representation should also be conditioned on the previously
predicted labels. This can be implemented by leveraging
the ability of RNNs to maintain a hidden state that passes
on information from previous time steps and adds new in-
formation as needed. By initializing the hidden state of the
RNN with the image representation, the RNN can pass on
the image representation and modify it as needed when pre-
dicting each label. A high level view of the model archi-
tecture is shown in fig 2. Note that this model is similar to
many image captioning models, such as the model we im-
plemented for assignment 3 and the model from Xu et al.
[7].

Figure 2. CNN as initialization

Again, the image representation is obtained from the pre-
trained VGG16 model, with the final layer modified and re-
trained to project to the proper dimensions for initializing
the RNN. LSTMs cells were again used for the RNN. I im-
plemented with three different ways of initializing the RNN:
1) have the CNN output a projection of hidden state size and
use as the first hidden state with zero cell state 2) have the
CNN output two different projections of hidden state size
and use as the first hidden and cell states 3) have the CNN
output a projection of embedding size and use as the input
of an additional LSTM cell, whose outputted hidden and

cell states are used as the first hidden and cell states.

3.3. CNN sequence to sequence

GoogLeNet [3] obtained accuracy improvement by
adding classification layers to the intermediate layers, prov-
ing that lower level image features can also be useful for
classification. However, GoogLeNet assigned an arbitrary
importance to the lower layers by discounting them by a set
weight of 0.3.

In order to create a model that can learn the importance
of each intermediate layer and have this importance be con-
ditioned on the input image, the ability of RNNs to maintain
a hidden state is again leveraged. In addition to the decoder
RNN that outputs the predicted labels, a new encoder RNN
is added that takes as inputs the intermediate layers of the
CNN (still VGG16). This encoder RNN learns to maintain
the information from the lower layers in such a way that
optimizes the classification loss function, i.e. information
from the lower layers will be passed via the hidden states
and maintained as needed. This model is similar in struc-
ture to the sequence to sequence (seq2seq) model [23] that
is commonly used in NLP for tasks where the input and
output are both sequences. In this case, instead of an input
sequence of text, the input sequence is the different levels
of image features. Specifically, the features after each pool-
ing layer and the final layer is projected into the embedding
space and fed as inputs into the encoder RNN. A high level
view of the model architecture is shown in figure 3.

Figure 3. CNN sequence to sequence

3.4. Adding attention

Attention over the encoder states allows the decoder to
have more direct access to the information from earlier time
steps. In this case, the information from earlier time steps
are the lower level image features. Therefore, I imple-
mented attention on the CNN sequence to sequence model
to give it more direct access to the lower level image fea-
tures. Attention works by first computing an attention score
for each of the encoder time steps. This score is condi-
tioned on the current decoder output and the encoder out-
put for each time step. Several different scoring functions
have been used for existing attention models [18]. I chose
the scoring function first presented by Bahdanau et al.[1],

3



which is one of the more commonly used scoring functions,
and is referenced in several papers such as [18], [8], and
[9]. This scoring function computes the attention score ati
for decoding step t and encoding step i using the following
equations:

sti = tanh(hiW1 + dtW2 + b)vT (3)

ati = softmax(sti) (4)

hi is the encoder output at step i and dt is the decoder output
at step t. The attention scores are then used to compute a
context vector that is the weighted sum of all the encoder
outputs:

ct =
∑
i

atihi (5)

This context vector is then concatenated with the decoder
output to create an attentional output/hidden state (recall
that the output for a LSTM cell is its hidden state, hence
the interchangeable terminology):

d̃t = tanh([ct; dt]Wc + bc) (6)

This attentional output state is what is passed to the final
output projection layer to get the label probability distribu-
tions. A high level view of the model architecture can be
seen in figure 4.

Figure 4. CNN sequence to sequence with attention

To make each decoding step aware of the attention from
the previous decoding step, the input feeding approach [18]
was also implemented. The previous attentional output state
is concatenated with the next input to create the input that
is passed to the LSTM:

x̃t = tanh([d̃t−1;xt]Wx + bx) (7)

In total, the new learnable parameters added by the attention
mechanism are W1, W2, b, v, Wc, bc, Wx, and bx.

I also implemented the attention mechanism on the CNN
as initialization model and the image-label joint embedding
model by directly considering the outputs from the inter-
mediate CNN layers as the encoder output states (hi in the

above equations). For the CNN as initialization model, the
rest of the attention mechanism is identical to what has been
described. For the image-label joint embedding model, the
context vector is computed in the same way, but instead of
then computing an attentional output state, the context vec-
tor is used as the image representation I in equation (1). As
a quick side note, the code referenced when implementing
these models are [19], [24], and [25].

4. Dataset
4.1. MS-COCO

The dataset used for this project is the Microsoft Com-
mon Objects in Context (MS-COCO) dataset [11]. This
dataset contains labels for image classification, segmenta-
tion, and captioning. For image classification, there are
>123k images and 80 object categories, covering a wide
range from dogs to airplanes to pizza. MS-COCO was cho-
sen for this project because it has 3 different objects per im-
age on average, making it well suited for the task of multi-
label image classification. Table 1 shows a few sample im-
ages and table 2 shows the top five most and least frequent
classes in the full MS-COCO train set. Existing work on
multi-label image classification also used MS-COCO [5],
making it possible to compare my results with existing re-
sults. In order to speed up training and evaluation time,
especially since there were several different models imple-
mented for this project, a subset of MS-COCO was used.
20k images were sampled for the train set, 5k for validation
set, and 5k for test set.

4.2. Data preprocessing

For image preprocessing, I used the code provided by
a TA of the class, Olivier Moindrot [19]. The code im-
plements the standard preprocessing for VGG on ImageNet
[21]. This same preprocessing was used because my mod-
els used VGG as their CNN and also because MS-COCO
images have similar sizes to ImageNet images. The im-
ages are first resized so that their smaller side is 256 pixels.
Each channel is normalized by subtracting its mean. Dur-
ing training, a random 224x224 crop is taken and the image
is flipped horizontally with 50% probability. During eval-
uation, the center 224x224 crop is taken and the image is
never flipped.

For the labels, they were preprocessed so that only the
unique labels for each image remain. In MS-COCO, if there
are multiple instances of the same class in an image, then
there will be multiple labels for that class, which is needed
for segmenting the different instances; but since this project
is on classification, the duplicate labels were removed. An-
other preprocessing step required for the labels is to set their
order for each image. Since the models that I implemented
use RNNs to output labels one at a time, the order of the

4



Image Labels

dog, boat

person, car, stoplight, back-
pack, handbag, tie, suitcase,
cellphone

zebra, elephant, giraffe

pizza, fork, cup, table

Table 1. Samples from MS-COCO

Most Frequent Count Least Frequent Count
person 45174 hair drier 128
chair 8950 toaster 151
car 8606 parking meter 481
dining table 8378 bear 668
cup 6518 scissors 673

Table 2. Most and least frequent classes from MS-COCO

labels used during training is an important consideration. I
decided to order the labels by their frequency in the train
set, from most to least frequent, based on the intuition that
more frequent classes would be easier to predict, and can
be used to help predict the less frequent classes. Wang et al.
[5] also tried other orderings and found no notable effects
on the final results. Special START and END tokens were
added to the beginning and end of the list of ordered labels,
so that the RNN can know when to start and stop decoding.
PAD tokens were added so that batches of labels are of the
same length.

5. Experiments

5.1. Training

For gradient descent, the Adam optimizer [17] was used
since it was recommended in lecture as a good default
choice for most models. The default values of learning rate
= 0.001, beta1 = 0.9, beta2 = 0.999, and epsilon = 1e-08
were initially used. Batch size of 32 was used since it was
recommended as a good default choice in [15]. The LSTMs
used hidden state size of 512, same as Wang et al.’s model
[5].

Since the vocabulary size is only 83 for this task (80
classes + 3 special symbols), I hypothesized that a small
embedding size would be enough. Pretrained GloVe vectors
come in sizes 50, 100, 200, and 300. I chose 100 as the em-
bedding size in order to compare randomly initializing the
label embeddings vs initializing with pretrained GloVe vec-
tors [20]. The GloVe vectors were trained on the Wikipedia
and Gigaword corpus that contains 6 billion tokens. For
classes that contain multiple words, they were treated as
bag of words, and the average of the GloVe vectors of every
word was used as the initial label embedding. For exam-
ple, for the class ”sports ball”, the vectors for ”sports” and
”ball” were averaged together. The intuition behind using
pretrained GloVe vectors is that the semantic relationships
captured by GloVe are similar to the label dependencies that
the label embeddings should capture. Experiments for every
model were ran with both random initialization and GloVe
initialization. The special symbols were always randomly
initialized.

For random initialization, Xavier initialization [14] was
used. Xavier initialization was also used for all the weight
parameters and zero initialization was used for all the bi-
ases. Another detail to note is that for the CNN sequence to
sequence models, experiments were ran with both shared
and separate LSTM parameters for the encoder and de-
coder RNNs. For regularization, weight decay of 0.0005
and dropout of 0.5 was applied to the fully connected layers
in VGG16. Each model was trained for 20 epochs. Af-
ter every epoch, the train and validation precision/recall/f1
were evaluated, and the model parameters were saved to
checkpoint. This essentially allows for early stopping be-
cause checkpoints from earlier epochs can be used as the
final model.

After the initial set of experiments, I noticed that for all
the models, the training loss decreased very rapidly for the
first few epochs, then decreased very slowly for the remain-
ing epochs, as shown in figure 5. Note that the initial loss
of 4.41 is assuming that the model starts off by assigning
equal probability to every label (1/83), resulting in cross
entropy loss of −log(1/83) = 4.41. The training loss plot
shows that the learning rate is likely too high, therefore,
experiments were ran with lower learning rates of 0.0005

5



and 0.0001 for all the models. Also from the initial set of
experiments, I noticed that for the top performing models,
the train vs validation f1 score showed that there was some
overfitting, as can be seen in figure 6. Therefore, an addi-
tional dropout of 0.2 was added to the LSTM cells for these
models, as suggested by [26].

Figure 5. Training loss for CNN sequence to sequence

Figure 6. Train vs validation f1 score for CNN sequence to se-
quence

5.2. Results

The evaluation metrics used were precision, recall, and
f1 score, averaged across all the evaluation samples. Preci-
sion is the percentage of predicted labels that is correct for a
given sample. Recall is the percentage of correct labels that
was predicted for a given sample. F1 score is a combination
of precision and recall given by:

F1 = 2
P ×R

P +R
(8)

Not that during evaluation, the order of the predicted la-
bels does not matter. Table 3 shows the final test set results
on MS-COCO for the various models.

Model P R F1
WARP 59.8 61.4 60.7
Softmax 60.2 62.1 61.1
Binary cross-entropy 61.7 65.0 63.3
CNN as initialization w/ attn 69.6 59.3 64.1
Image-label joint embedding 66.6 65.3 65.9
Image-label joint embedding w/ attn 69.5 64.7 67.0
Wang et al. 69.2 66.4 67.8
CNN seq2seq w/ attn 70.9 68.0 69.4
CNN as initialization 71.5 67.4 69.4
CNN seq2seq 71.1 68.0 69.5

Table 3. Final results on MS-COCO

The first three models in gray are CNN only models
where the top three classes with highest probabilities are
outputted as the predicted labels. Their results are obtained
from [5]. The model in yellow is the image-label joint em-
bedding model implemented by Wang et al., and the results
are their best numbers on MS-COCO [5]. These models
were trained on 80k images and tested on 20k images from
MS-COCO.

The models in green are the models described in the
Methods section, trained on 20k images and tested on 5k
images. The results shown are using the best configu-
ration and hyperparameters for each model, determined
by choosing the checkpoint with the highest validation f1
score. As can be seen from table 3, all these models out-
performed the CNN only models, and three of them out-
performed Wang et al.’s best model, producing state of the
art results. The best performing model was the CNN se-
quence to sequence model. This model used learning rate of
0.0001, lstm dropout of 0.2, pretrained GloVe embeddings,
and shared encoder/decoder weights. The CNN sequence
to sequence with attention (learning rate 0.0001, no lstm
dropout, separate encoder/decoder weights) and CNN as
initialization models (learning rate 0.0001, no lstm dropout)
also achieved very similar results.

Adding attention did not always help, which might be
due to the fact that attention provides more benefit for
longer sequences where it’s harder to maintain information
from many time steps back. In these models, the input se-
quence is only five steps long.

5.3. Analysis

Since my hypothesis was that applying these NLP deep
learning techniques would help with predicting multiple la-
bels for an image, I analyzed the performance of the best
model on images from the test set, categorized by their num-
ber of labels. The results are shown in figure 7.

The model did the best at classifying images with only
one class, which is not surprising since those images are
still the easiest to predict. The benefit of applying these

6



Figure 7. F1 score for different number of labels

NLP deep learning techniques can be seen in the model’s
performance when there are greater numbers of labels. The
performance decreases but plateaus and even rises a little as
the number of labels increases, proving that the RNNs did a
good job of capturing the relationships between labels.

I also analyzed the best model’s performance by class.
The results are shown in figure 8 at the very end of this pa-
per. Note that some of the classes have 0 f1 score, either
because they did not appear in the test set, or they were ac-
tually never correctly predicted. The classes with the high-
est f1 scores tend to be visually distinct objects, such as
zebra, person, tennis racket, and surfboard; which makes
sense since objects with distinct image features should be
easier to identify. Similarly, the classes with the lowest f1
scores tend to be objects that aren’t very visually distinct,
such as handbag, backpack, tie, and bench; which makes
sense since these objects can look similar to other objects.

Examining the model’s predictions for specific exam-
ples also show the benefit from applying these NLP deep
learning techniques. Table 4 shows a few examples where
the model made perfect predictions even though they have
several labels. These examples show that the NLP tech-
niques help with identifying objects that commonly appear
together and allows for objects to be identified even when
they’re visually barely discernible. For example, in the ten-
nis picture, the tennis ball is very small and difficult to
pick out from the background, but the model was still able
to identify it; and in the restaurant picture, the knife and
fork are almost completely hidden behind the bowl, but the
model was still able to identify them. Table 5 shows a few
examples where the model made completely wrong predic-
tions. These examples show mistakes made due to the label
relationships captured by the model; once an initial mistake
is made, the label relationships lead to more mistakes. For
example, in the teddy bear picture, the human sized teddy
bear was likely mistakenly identified as a person, causing
the model to also mistakenly predict car and bicycle.

Image Labels

laptop, keyboard, mouse, tv

person, tennis racket, sports
ball, chair

person, car, truck, traffic
light, clock

person, dining table, chair,
bowl, fork, spoon, knife,
cup, bottle, wine glass

Table 4. Examples from MS-COCO with perfect predictions

6. Future Work
An immediate improvement that can be made to the

model is to perform beam search during inference and out-
put the sequence with the best overall probability, instead
of just outputting the class with the best probability at each
time step individually. This should help for the mistake ex-
amples shown in table 5. For example, teddy bear might
have had the second highest probability at the first de-
coding step, and its probability probably would have been
higher than the sequence probability of the wrong predic-
tions of person, car, and bicycle. More hyperparameter
tuning should also result in further improvements. Due
to time/resources constraints while trying several different
models, only minor hyperparameter tuning was done on the
learning rate and lstm dropout. Further tuning learning rate
and regularization, as well as other parameters such as em-
bedding size and hidden state size, can easily produce even
better results. Training on the full dataset should also re-
sult in even more improvements. These models were only
trained on a quarter of the full train set, and especially in
deep learning, the training set size can have a huge impact
on model performance. Finally, retraining the entire VGG
instead of just the final layer might also result in improve-

7



Image Labels Predicted

refrigerator,
cat

sink, toilet

oven, bottle,
knife

cellphone,
person

teddy bear person, car,
bicycle

vase, potted
plant

bowl, dining
table, cake

Table 5. Examples from MS-COCO with completely wrong pre-
dictions

ments, allowing the CNN part of these models to be better
optimized for this task and dataset.

7. Conclusion

Despite all the possible steps for improvements detailed
in the previous section, the current models already produce
state of the art results on the multi-label image classification
task on MS-COCO. Analyzing the results confirm the ben-
efits of applying word embeddings, RNNs, and attention to
this task, and specific examples show pretty remarkable and
difficult predictions that were made possible by these NLP
techniques.

References
[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Trans-

lation by Jointly Learning to Align and Translate. https:
//arxiv.org/pdf/1409.0473.pdf, 2016.

[2] C. G. et al. Pointing the Unknown Words. https://
arxiv.org/abs/1603.08148, 2016.

[3] C. S. et al. Going deeper with convolutions. https://
arxiv.org/abs/1409.4842, 2014.

[4] J. C. et al. Empirical evaluation of gated recurrent neural
networks on sequence modeling. https://arxiv.org/
abs/1412.3555, 2014.

[5] J. W. et al. Cnn-rnn: A unified framework for multi-label
image classification. CVPR, 2016.

[6] K. H. et al. Deep residual learning for image recognition.
https://arxiv.org/abs/1512.03385, 2015.

[7] K. X. et al. Show, Attend and Tell: Neural Image Cap-
tion Generation with Visual Attention. https://arxiv.
org/abs/1502.03044, 2016.

[8] O. V. et al. Grammar as a Foreign Language. https://
arxiv.org/pdf/1412.7449.pdf, 2015.

[9] O. V. et al. Pointer Networks. https://arxiv.org/
pdf/1506.03134.pdf, 2017.

[10] T. M. et al. Distributed representations of words and phrases
and their compositionality. Neural Information Processing
Systems, 2013.

[11] T.-Y. L. et al. Microsoft COCO: Common Objects in Con-
text. https://arxiv.org/abs/1405.0312, 2015.

[12] Y. Z. et al. Visual7W: Grounded Question Answering
in Images. https://arxiv.org/abs/1511.03416,
2016.

[13] Z. A. et al. Label-Embedding for Image Classification.
https://arxiv.org/abs/1503.08677, 2015.

[14] X. Glorot and Y. Bengio. Understanding the dif-
ficulty of training deep feedforward neural net-
works. http://proceedings.mlr.press/v9/
glorot10a/glorot10a.pdf, 2010.

[15] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.
org.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 1997.

[17] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Op-
timization. https://arxiv.org/abs/1412.6980,
2017.

[18] M. Luong, H. Pham, and C. D. Manning. Effective
approaches to attention-based neural machine translation.
EMNLP, 2014.

[19] O. Moindrot. https://
gist.github.com/omoindrot/
dedc857cdc0e680dfb1be99762990c9c.

[20] J. Pennington, R. Socher, and C. D. Manning. GloVe: Global
Vectors for Word Representation. EMNLP, 2014.

[21] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. https://
arxiv.org/pdf/1409.1556.pdf, 2015.

[22] R. K. Srivastava, K. Greff, and J. Schmidhuber. Train-
ing Very Deep Networks. https://arxiv.org/abs/
1507.06228, 2015.

[23] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence
Learning with Neural Networks. https://arxiv.org/
pdf/1409.3215.pdf, 2014.

[24] Tensorflow. https://github.com/tensorflow/
tensorflow/blob/master/tensorflow/
contrib/slim/python/slim/nets/vgg.py.

8

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/abs/1603.08148
https://arxiv.org/abs/1603.08148
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/1502.03044
https://arxiv.org/pdf/1412.7449.pdf
https://arxiv.org/pdf/1412.7449.pdf
https://arxiv.org/pdf/1506.03134.pdf
https://arxiv.org/pdf/1506.03134.pdf
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1511.03416
https://arxiv.org/abs/1503.08677
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980
https://gist.github.com/omoindrot/dedc857cdc0e680dfb1be99762990c9c
https://gist.github.com/omoindrot/dedc857cdc0e680dfb1be99762990c9c
https://gist.github.com/omoindrot/dedc857cdc0e680dfb1be99762990c9c
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/abs/1507.06228
https://arxiv.org/abs/1507.06228
https://arxiv.org/pdf/1409.3215.pdf
https://arxiv.org/pdf/1409.3215.pdf
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/nets/vgg.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/nets/vgg.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/nets/vgg.py


[25] Tensorflow. https://github.com/tensorflow/
models/blob/master/im2txt/im2txt/show_
and_tell_model.py.

[26] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent Neural
Network Regularization. https://arxiv.org/abs/
1409.2329, 2015.

9

https://github.com/tensorflow/models/blob/master/im2txt/im2txt/show_and_tell_model.py
https://github.com/tensorflow/models/blob/master/im2txt/im2txt/show_and_tell_model.py
https://github.com/tensorflow/models/blob/master/im2txt/im2txt/show_and_tell_model.py
https://arxiv.org/abs/1409.2329
https://arxiv.org/abs/1409.2329


Figure 8. F1 score for different classes

10


