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Abstract

Automated art analysis is useful as a tool for both re-
search and educational app development. We perform artist
classification on 13,574 works from 25 artists in the Ri-
Jjksmuseum collection using various applications of transfer
learning. The most successful model (based on ResNetl8)
achieved 82.5% accuracy on a held-out test set, which is a
7% improvement relative to the previous best single model
approach’s performance on this dataset [23|]. We illus-
trate by example that the errors this pipeline makes may
help identify new relationships between artists or schools
of art. Finally, we also propose a new application of style
transfer to classification. Although our experiments with
this pipeline did not perform as well as those that used
ResNetlS, we argue that the insights this method can pro-
vide into an artists’ work merit further investigation of this
technique. All code has been published to a public Git
repository.[]

1. Introduction

Many art museums have digitized their collections,
which allows developers to use computer vision to create
more engaging experiences for museum-goers. The most
obvious example is a mobile application that uses a phone
camera to identify an object on display. We believe that this
data can also be used to reveal trends in artwork of great rel-
evance to art historians. In the process, computer scientists
can better understand intricacies and extensions of modern
paradigms, especially in computer vision. One such ques-
tion at the intersection of art history and computer vision is
the identification of a painting’s artist. The Rijksmuseum
in Amsterdam released a dataset of its collection in 2014,
challenging researchers to automatically classify works in
the dataset by artist, type, material, and year [15]]. In this
paper, we describe approaches for tackling the artist classi-
fication challenge using transfer learning, including a pre-

! All code can be found at jhttps:/github.com/eblaine/cs231a-project
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trained ResNet architecture and a new application of style
transfer to artwork classification [9} 5]. Given a photo-
graphic reproduction from one of the 25 most prolific artists
in the dataset, we automatically predict the artist who cre-
ated the work.

2. Related Work

A mixture of conventional and deep learning approaches
has been used to tackle painting classification. Earlier work
uses handcrafted features to identify a painting’s artist. Spe-
cific mathematical methods, like sparse coding and fractal
geometry, have been applied to certain artists’ works to dif-
ferentiate them from those of imitators [[10, 21]]. Collabora-
tion with art historians improved feature engineering, which
led to promising results in attributing artworks by van Gogh
and his contemporaries [[11]. For example, [15] uses nor-
malized Fisher vectors with 1-vs-Rest linear SVM classi-
fiers to correctly classify 74.8% of artists in a held-out test
set. Feature learning learns features directly from the data;
while more data-intensive, biologically-inspired approaches
in this vein, like convolutional neural networks, have out-
performed all existing learning algorithms on many chal-
lenging image classification tasks [[14]. The best reported
use of a single CNN for artist classification achieved 78.3%
accuracy using an AlexNet-inspired architecture [24]. The
best reported ensemble model ensembles several multi-
scale models in an effort to combine scale-invariant and
scale-variant representations. This achieves 82.1% accu-
racy and is the best reported result on the artist classification
task.

The success of the last class of methods especially de-
pends on the use of transfer learning. This is the process of
training a model to perform some task in a given domain,
starting from a model trained for another domain and/or
task. This general approach has yielded state-of-the-art re-
sults in a wide diversity of tasks, such as Web document
classification [4]], indoor WiFi localization [16]], and senti-
ment classification [1]. In computer vision, this paradigm
has been used in situations that require a high-capacity
model but have only a small quantity of annotated detec-
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tion data. Specifically, convolutional architectures trained
for image classification see millions of images, and their
features have been remarkably generalizable to other tasks.
Most notably, [6] reduced error on object detection on the
PASCAL-VOC dataset by almost 30% through using a pre-
trained ImageNet. These nets can also be used as the initial-
ization of architectures for wholly different transfer tasks.
[25] use a pre-trained ImageNet as an initial architecture
to transfer night-time satellite images for mapping poverty.
Given this, pre-trained ImageNet architectures seem like
sufficient and suitable candidates for painting classification.

In particular, this particular experiment serves as a
testbed for two fascinating challenges in transfer learning:
scene composition and cross-depiction transfer. First, Im-
ageNet is trained on hundreds of thousands of pictures of
twenty different objects. The features extracted in a pre-
trained ImageNet architecture are thus quite expressive of
the style and content of these chosen objects. On the other
hand, paintings have scenes. It will be interesting to see how
features of individual objects generalize to large, complex
scenes composed of many objects, many of which are not in
the original set of objects. Second, ImageNet is trained on
photographic images of these objects. The art we are look-
ing at spans the 15" to 20" centuries, and as a result, they
range in material from oil to charcoal to porcelain. Conse-
quently, the styles conveyed in the pre-trained features may
be manifested very differently in convolution than those of
a neural net trained on our dataset. Studying the effects
of transfer learning across depiction materials serves as an-
other important contribution of our project.

Although transfer learning has been hardly used for
painting classification, the techniques underlying it have
been extensively used in recent relevant work on style trans-
fer. [S] use CNNss to separate and recombine the content and
style of arbitrary images. These findings have been effec-
tively used in generative approaches to changing images’
visual content [12} 22]]. Other work has used explicit, gen-
eral representations of the convolutional layers to apply a
variety of styles, rather than just that of a single painting [3]
However, to the best of our knowledge, the core principles
of style transfer have not been used for a logical classifica-
tion task. Thus, we seek to combine the principles behind
style transfer and transfer learning to more effectively iden-
tify paintings’ artists and approach genealogical questions
about art.

3. Dataset and Features

3.1. The Rijksmuseum Dataset

The Rijksmuseum Challenge dataset contains 222,945
photographic reproductions of works from 20,116 artists.
Most of the artists in the dataset produced only a few of the
items in the collection, so a classifier would have difficulty

4322

Distribution of works per artist

14000

12000

10000

8000

6000

Number of artists

4000

2000

0 5 10

0

15 20
Number of works in dataset

25

Figure 1. Histogram of how many artists produced various num-
bers of works. Notice that most artists produced very few (< 5)
works.
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Figure 2. Counts of pieces for each of the top 25 artists.

learning meaningful representations of those artists” works.
Figure|l|displays the distribution of numbers of works pro-
duced by artists in the dataset.

Past attempts have trimmed this dataset based on a
threshold of works produced per artist (e.g. van Noord et
al. use 64 [23]). However, we chose to use pieces from
the 25 most prolific artists, for 13,574 total data points. We
made this choice because the dataset has more than doubled
and the number of artists has more than tripled since that
previous attempt.

Within this set of 25 artists, there is still a fair amount of
variability in number of works produced (see Figure 2] for
a visual). To divide these remaining works into train, vali-
dation, and test subsets, we employed the following method
for class balancing from van Noord et al. [23[]: We assigned
70% of each artist’s works to the train set, 10% to the vali-
dation set, and 20% to the test set.

To work nicely with pretrained networks, all images
were resized and center-cropped to 224 x 224 pixels.

3.2. Features

For the classical baseline and transfer learning with clas-
sical techniques pipeline, we extract histogram of oriented



gradients (HOG) features. This feature extraction algorithm
bins local gradient orientations in an image, which might
implicitly capture some sense of an artist’s style for classifi-
cation. We made this choice over other methods that might
also capture style because (1) HOG features were a popu-
lar choice of descriptor for object detection before the net-
works we used for transfer learning were introduced and (2)
we found experimentally that some other common features
(SIFT, SURF) cannot be extracted from paintings reliably.

4. Methods

The best Rijksmuseum Challenge submission to date
uses transfer learning, so we attempted to replicate and ex-
tend those results [23]. Additionally, we implemented a
baseline model for comparison using classical computer vi-
sion techniques and a new architecture that uses style trans-
fer for classification.

4.1. Logistic Regression

The classical model we implemented uses a logis-
tic regression-based classifier, which uses cross-entropy
loss [[17]]:

where f; corresponds to the predicted probability that
data point ¢ is in class j, and y; is the true class for data
point ¢.

4.2. Convolutional Neural Networks

The next suite of methods utilize convolutional neural
networks, which include convolutional operations over the
input and are designed specifically for vision tasks. These
convolutional filters encode translation invariance, which
helps discover useful features in images [2]. A CNN is a
general function approximator consisting of a set of con-
volutional and fully connected layers, such that the out-
put of one layer is the input to the next. The first lay-
ers of the network typically learn lower-level features like
edges and corners, while further layers learn high-level
features like textures and objects. A convolutional layer
maps a tensor x € RMxwxd 1o g, € RP>*¥%d gych that
gi = pi(fi(W; x x + b;)). For the i-th convolutional layer,
W; € RI*1%d s a tensor of d convolutional filter weights of
size [ x 1, () is the 2-dimensional convolution operator over
the last two dimensions of the inputs, b; is a linear bias, f;
is an elementwise nonlinearity, and p; is a pooling function
[25]. The output dimensions h and W depend on the stride
and padding of the layer, which control how convolutional
filters slide over the input.

In addition to convolutional layers, CNN models also
have fully connected layers in the final layers of the net-
work. These map an unrolled version of the input €
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Rhwd 4 one-dimensional vector of the elements of a ten-
sor x € R"™wXd o an output g; € R* such that g; =
f+i(W;@ + b;). Here, W; € RF*hwd jg 3 weight matrix,
b; is a bias term, and f; is a (typically rectified linear unit)
nonlinearity function. These layers encode the input exam-
ples as feature vectors, to then be used as inputs to a final
classifier. These summarize the input into a vector for clas-
sification. The model is trained end-to-end via minibatch
gradient descent and backpropagation.

4.3. Transfer Learning

In transfer learning, a neural architecture trained for one
task is retrained for another. Typically, a new classifier layer
is trained first, to take full advantage of the successful fea-
tures of the prior model. The convolutional features are
then re-trained with a lower learning rate to adjust them to
the task at hand. Given the aforementioned results of trans-
fer learning in other computer vision tasks, we expect great
success.

We formalize transfer learning as in [16]]. A domain D =
{X,P(X)} consists of a feature space X and marginal
probability distribution P(X). Given a domain, a task
T = {Y, f} consists of a label space Y and a predictive
function f which models P(y|x) fory € Y and z € X.
We define a source domain and learning task Dg and Tg
and target domain and learning task Dy and T7. Transfer
learning aims to better learn the target learning task’s pre-
dictive function fr using the knowledge from Dg and T,
where Dg # Dy and Tg # Tr.

Here, the source domain is ImageNet, an object classifi-
cation image dataset of over 14 million images with 1000
class labels that have led to significant breakthroughs in
many vision tasks [18]. We utilize a deep residual net-
work, or ResNet, a family of deep architectures showing
compelling accuracy and nice convergence [9]. The rel-
ative recency of this work has made it underexplored in
transfer learning approaches, as other slightly older, more
lightweight architectures tend to be used more frequently.
Thus, in addition to our specific task, this also serves as a
case study in the utility of ResNet architecture in transfer
learning.

The target domain is the Rijksmuseum Challenge
dataset, using the preprocessing described before. The tar-
get task is artist classification for each painting. We will fol-
low the two cycles of training (classifier, then convolutional
layers). In these training cycles, we will use a cross-entropy
loss of the same form as logistic regression.

4.4. Transfer Learning with Classical Features

This pipeline is similar to the previous, but its fully con-
nected layer has a small change. We concatenate the flat-
tened output from the network’s convolutional layers with
a point in HOG space corresponding to the original image



(see Dataset and Features section). The resulting vector is
then used as input to the linear fully connected layer. This
step significantly increases the size of the linear layer’s fea-
ture space.

The baseline (HOG and logistic regression) method
demonstrated that HOG-based models are prone to overfit-
ting for this task, so we also introduced regularization in
this pipeline. We apply dropout to the HOG feature vector,
with the probability that a given parameter is dropped set
to p = 0.5 [20]. The classification vector produced by the
linear layer is a probability distribution over the number of
artists. For each minibatch, the cross-entropy loss is com-
puted using the correct class labels and the output vector of
the linear classifier layer.

4.5. Style Transfer

Recent advances in style transfer have successfully sepa-
rated a painting’s style from its content. This has then been
used to apply one painting’s style to another image. We
seek to take these principles from generative modeling to
classification. Consider a convolutional architecture with L
layers for feature extraction. Of these, let there be Lg style
layers and L content layers. We can write the dimensions
of a single feature map corresponding to a style layer as
N x Cj x Hj x Wj, where j € {1,2, ..., Lg} is the index
of the style layer, IV is batch size, and C;, H;, W; are the
layer’s number of channels, height, and width respectively.
We can flatten this feature map into a N x C;H;W; ma-
trix to more compactly represent each individual example’s
feature map.

We wish to use a single style or content layer, or some
combination of layers of the same type, to generate predic-
tions. To do this, we can create a set of embeddings for each
batch of examples and then run it through a linear classifier.
For example, for the single style layer described above, we
can create a N x C; H;W; embeddings matrix, where each
row represents the flattened style map for a single painting.
This concept can be easily generalized to multiple layers by
concatenating them together to form a larger embedding.
For example, flattening and concatenating all style layers
gives us a N x Z]le C;H;W; embeddings matrix. We
can then run a series of fully-connected layers (with reg-
ularization methods like dropout and ReLU) to generate a
classification vector with the desired output dimension. The
same principle can be applied for content.

It is of note that [5]] approach the style layer considerably
differently than we do. They attempt to minimize the differ-
ence in style between one image and another, transformed in
style in the pattern of the first. They represent style through
computing the spatial correlation of values within an image,
which is mathematically done via the Gram matrix of a sin-
gle layer. The loss is then computed via the L2 norm of
the sum of the difference between the various layers’ Gram
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matrices. The Gram matrix is used as a proxy for covari-
ance and is the best way to compactly represent this prin-
ciple when computing a loss. Since the embeddings will
be piped through a fully-connected layer before classifica-
tion, the training process will backpropagate through this
layer and, through retraining weights, better capture rele-
vant relationships between regions of the image. Moreover,
using the Gram matrix in designing an embedding would
square the number of terms in an already large embedding
matrix, which is simply untenable from a memory perspec-
tive. Consequently, for the purposes of linear classification,
using a concatenation of flattened style layers seemed suffi-
cient.

5. Experiment/Results/Discussion
5.1. Experimental Setting

As outlined in our methods, we applied a variety of clas-
sical and modern approaches in image classification. In all
of these tasks, we processed images in batches of 50. We
experimented with several batch sizes and found that this
was the largest size that had reasonable speed without ex-
cessive memory usage. We also utilized the Adam opti-
mizer [13]]. This has been shown to be faster and reach bet-
ter minima than most other built-in PyTorch optimizers. It
was also used in most recent transfer learning papers for vi-
sion, though no authors provided a justification. Thus, we
decided to use it as well.

5.2. Logistic Regression

In this experiment, we ran a logistic regression classi-
fier trained with stochastic gradient descent using HOG fea-
tures as input. This model overfits quickly, despite regu-
larization via L2 penalization [7]. With a learning rate of
a = 10~4, the model achieved 71.4% and 31.8% accuracy
on the train and test sets, respectively, after 6 epochs. De-
creasing the learning rate did not appreciably improve per-
formance. This significant gap between train and test accu-
racy indicates that HOG features alone are prone to overfit-
ting. One explanation for this is that a HOG feature vector
encodes both an artist’s style and a painting’s composition,
so the model does not generalize well to paintings by the
same artist with very different compositions (e.g. consider
a landscape and a portrait painted by the same individual).

5.3. Transfer Learning

This model uses the PyTorch implementation of
ResNet18, pre-trained on ImageNet. A new classifier layer
is used with the number of classes equal to the number of
artists. Dropout with probability 0.5 is applied before clas-
sification; this substantially reduced overfitting. We first
train this classifier layer using an Adam optimizer with a
learning rate of 1 x 10~2 for 5 epochs. We initially utilized
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Figure 3. A sample residual block [9].

this learning rate then randomly sampled others; however,
it yielded better results than any tried during the search.
We then retrain the full architecture using a learning rate of
4.5e — 4, which was found to yield the best results through
random sampling. This had a recorded test accuracy of
82.5%, over 7% better than the prior best single model ap-
proach. The train accuracy of 99.6% and broadly conver-
gent validation loss seemed to indicate that we would not
receive substantially better results with more training, so we
moved on to other experiments. Running this architecture
multiple times and combining the resultant models through
ensembling would likely substantially boost the results.

Before settling on the ResNetl8, we also attempted
the PyTorch implementations of AlexNet, VGG-16, and
ResNet50. All were pre-trained for the ImageNet challenge
and run for 5 epochs of classifier training and 5 of convolu-
tional training. The difference between these results has im-
plications for the use of ResNet in future transfer learning-
based experiments. Our experiments directly compare the
most common CNN-based architectures and help test their
performance across depiction materials and in scenes.

The AlexNet architecture performed substantially worse,
even with significant hyperparameter search. The highest
recorded test accuracy was 32.3%. Given the success of
pre-trained AlexNets in many other transfer learning ex-
periments, this may be due to poor hyperparameter search
ranges. It is more likely, though, that the ResNet18 uses
better, more generalizable convolutional features, as its er-
ror rate on the ImageNet is half that of AlexNet’s. This
improvement can be directly attributed to the use of resid-
ual blocks. The input z typically goes through conv-relu-
conv layers to compute some F'(x). Let the value prop-
agated to the next layer be H(x). In a traditional CNN,
H(x) F(z). This traditional representation keeps no
information about the original . On the other hand, in a
residual block architecture, H (z) = F(x) + «. Each layer
thus computes a change to the original input to get an altered
representation. In terms of training, it is easier to optimize
the residual mapping than the original mapping, since the
addition operations distribute gradients to all layers. This
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set-up makes the ResNet particularly better in our transfer
setting, when the target domain images significantly differ
in both content and style from those in the style domain.
Even after some retraining, the representation F'(z) pro-
duced by the convolutional weights is likely to significantly
differ from the optimal convolution of the source image. As
aresult, passing the raw input through the layers, as in resid-
ual modules, will pass more representative features to the fi-
nal image layers. This helps explain the significantly better
performance of the pre-trained ResNet in a cross-depiction
transfer learning setting.

Second, the VGG-16 architecture seemed promising,
given that other literature has demonstrated its success in
transfer learning [8]]. However, a single epoch of VGG was
five times slower than one of ResNet, so fully training the
model was untenable given the timeline of the project. This
stems from the much higher memory and computation re-
quirements of VGG [19]. Given our own limitations on
GPU use, we felt that it was a better use of our time to fo-
cus on hyperparameter optimization and other models than
spending hours tuning VGG.

Third and finally, ResNet50 was much more difficult to
re-train than the ResNetl8. It had a peak train/test accu-
racy of 81.3% and 67.4%. Training a linear classifier used a
learning rate of 1 x 1073, and training the full architecture
used a learning rate of 3 x 103, The higher learning rate for
the convolutional layers reflects the difficulty of re-training
deeper networks in a transfer setting. While deeper net-
works yield much better results on specific tasks, this seems
to decrease the generalizability of their features. Typically,
higher layers capture more abstract features of the input,
while lower layers are more tailored to the specific objects
being captured. Here, despite the success of residual mod-
ules in propagating the raw input, the extracted features will
be less generalizable as more layers are used. Our direct
comparison of the ResNet18 and ResNet50 experimentally
confirms this through a case study.

The ResNet18 confusion matrix is displayed in Figure 4]
The bright diagonal indicates performance was generally
good. Bright spots outside the diagonal indicate incorrect
predictions. Some errors are a function of similarity be-
tween works of the same type created at around the same
time. For example, Virgilius Solis I was frequently mis-
classified as Crispijn van de Passe, which makes sense be-
cause both men were engravers who depicted scenes from
mythology and fantasy in the late Sixteenth Century. We
also see some confusion between artists belonging to re-
lated schools, such as Antonio Tempesta the Baroque en-
graver begin mistaken for Johann Sadeler (I) the Mannerist
(Mannerism is considered a precursor to the Baroque style).

The two most-confused artists are more unexpected,
however. Daniel Chodowiecki, a Polish-then-German print-
maker whose work is best classified as Classicist, is fre-
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Figure 4. Confusion matrix for ResNetl8 architecture. Vertical
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quently predicted to be that of Jozef Israels, a social real-
ist from over a century later. Social Realism actively re-
jected Romanticism, which borrowed from Classicism, so
one would not expect these two artists to produce similar
works. Moreover, these artists worked with different pri-
mary media, depicted individuals of different social class,
and displayed different themes. However, closer inspec-
tion of Chodowiecki’s paintings reveals that both artists
paint figures with intense chiaroscuro and use similar scene
compositions. This indicates that our model’s errors could
encourage art historians to consider relationships between
artists that are not usually discussed together.

5.4. Transfer Learning with Classical Features

This model employs a pretrained ResNet18 model and
concatenates a HOG feature vector to its flattened convolu-
tional layer output before its fully-connected layer. Figure[]
shows the model’s training and validation loss over time
compared to that of the previous model, which performed
better. This pipeline trained its fully-connected layer for
8 epochs with a learning rate of 1072, and then all layers
were trained with a smaller learning rate of 4x107°. We
kept the learning rates the same as the previous experiment
for two reasons: (1) we wanted an apples-to-apples com-
parison of the performance for each model and (2) training
this model is slow because HOG features cannot be batch-
extracted easily, and there is a large enough performance
deficit between this model and the previous that hyperpa-
rameter tuning did not seem worth the extra time.

After all 16 epochs, the model classified training data
with 92.5% accuracy and test data with 59.5% accuracy.
Several factors might contribute to this performance reduc-
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eral epochs. Top: ResNetl8 architecture. Bottom: ResNetl8 with
HOG features appended to fully-connected layer input.

tion. In this setting, the linear layer must reduce the vector
space dimensionality from over one million to 25 in a sin-
gle step. Adding intermediate layers may have helped per-
formance, but was not possible due to memory constraints.
Additionally, HOG features are not well suited to scene de-
scription, and may add a significant amount of noise.

5.5. Style Transfer

This model uses a pre-trained SqueezeNet to extract style
and content embeddings for each batch of paintings. While
prior experiments used the ResNet, we used a SqueezeNet
for this task due to its faster training and familiarity with the
relevant layers corresponding to style and content. More-
over, creating a fully-connected layer from a large, flattened
feature map to a much smaller classification vector can re-
quire a vast number of parameters. We hoped that due to
SqueezeNet’s significantly smaller number of parameters,
this process would take less memory. Unfortunately, due to
RAM constraints, utilizing all content and style layers was
not possible. Instead, we only used one content layer and
one style layer in this classification. This was not an issue
with content, as only one convolutional layer has been de-
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termined to hold relevant features. However, four layers’
activations are correlated with style. We chose one of the
middle layers, as we thought that higher layers would be too
abstract but lower ones may be too specific to the original
data. We then created embeddings following the procedure
outlined before.

In training this model, we employed a cyclical training
technique. We first froze the gradients for the SqueezeNet
and passed a batch of images through. For each batch, we
flattened the relevant content activations. We then trained a
linear layer for artist classification on top of these flattened
activations. We conducted five training epochs for this lin-
ear layer, using a learning rate of 1x 10~3 and cross-entropy
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loss. The true classes of each painting were used for ground
truth. Then, we retrained the SqueezeNet using a new clas-
sifier layer with output size equal to the number of artists.
We used a learning rate of 5 x 107> with the same loss
and ground truth. We conducted this cyclical process for 5
iterations. Since our goal here was not to train the best pos-
sible model, but rather to understand and analyze sources of
confusion, we did not focus on hyperparameter optimiza-
tion. We repeated this same process for the style activa-
tions. Ultimately, we found a train/test accuracy of 77.8%
and 48.9% for content and 97.4% and 63.5% for style. The
significantly better performance of style is not surprising; it
makes far more sense that style is more associated with a
certain artist than content would be. The significantly bet-
ter performance of the train set indicates overfitting, despite
the addition of dropout. While we’d have liked to add extra
linear layers, with ReLU and dropout, memory constraints
made a better linear classifier unworkable.

The relevant confusion matrices are displayed in Fig-
ure [f] Overall, performance is worse than the standard
transfer learning with ResNetl8. Additionally, while the
ResNet18 errors revealed meaningful insights about artist
relationships, the errors we observed mostly reveal limita-
tions of the architecture and dataset. For example, we only
use one convolutional layer in each case due to memory
constraints, even though there are 4 layers that correspond
to style. Hence, the feature space is not as expressive as it
could be.

That said, we hypothesized that the content embeddings
would confuse works in the same type from approximately
the same time, and this may be true to some extent. For
example, many engravers and printmakers from the Sev-
enteenth Century are classified as Wenceslaus Hollar, who
was a prolific artist matching that description. However, the
confusion matrix also highlights class imbalance as an issue
with this model. The vertical column of artists mistaken for
George Breitner demonstrate this problem especially well.
Breitner was a social realist who painted ordinary people
in Amsterdam with completely flat color. The model in-
correctly classifies many artists as Breitner, and some of
those artists have no obvious connection to Breitner (e.g.
Chodowiecki, a Classicist engraver and painter that used
high contrast to depict wealthy Romans and mythological
characters).

Style embeddings exhibit the class imbalance problem to
a lesser extent, but also reveal some of the more meaning-
ful cross-school relationships as observed in the ResNet18
architecture. For example, Mannerists and Baroque artists
are confused again. With more time, we would have inves-
tigated whether balancing classes as a preprocessing step
would generate more meaningful errors.



6. Conclusion/Future Work

We broadly investigated transfer learning as a means of
classifying works in the Rijksmuseum collection by their
artists. The best model, which began with a pretrained
ResNet18 model, classified works from 25 artists with an
accuracy of 82.5% on a held-out test set. This is a 7%
improvement relative to the previous best single model ar-
chitecture’s performance on this dataset. This performance
could likely be improved with intelligent model ensembling
and more extensive hyperparameter tuning. In particular,
our experimentation with different architectures for trans-
fer learning serves as a testbed for future cross-depictional
study. Due to the use of residual modules and reasonable
depth, the ResNet18 seems best for tasks in which the tar-
get material and content differ significantly from the source.
Additionally, classification based on style transfer may have
some promise, but more careful engineering of model archi-
tecture, data preprocessing, and tuning is needed.

With so many museums looking to use computer vision
to create mobile apps for enhanced museum visits, auto-
mated art classification is a worthwhile task in itself. How-
ever, we argue that the pipeline described here could be
useful to art historians as well. From our small set of 25
artists, we identify a possible novel relationship between
two artists that are not typically discussed together (Daniel
Chodowiecki and Jozef Israels). With a larger classification
space, others could use this pipeline as inspiration for new
connections to investigate more thoroughly.
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