
Understanding the Amazon from Space
Deep Learning for Satellite Image Classification

Loren Amdahl-Culleton
Department of Mechanical Engineering

Stanford University
lkac@stanford.edu

Meredith Burkle
Department of Electrical Engineering

Stanford University
mnburkle@stanford.edu

Miguel Camacho Horvitz
Department of Computer Science

Stanford University
somosmas@stanford.edu

Abstract

Motivated by the burgeoning commercial and research
interest in satellite images of Earth, we developed various
models able to efficiently and accurately classify the content
of such images. In particular, we trained deep convolutional
neural networks (CNNs) to learn image features and used
multiple classification frameworks including long short-
term memory (LSTM) label captioning and binary cross en-
tropy to predict multi-class, multi-label images. By fine-
tuning an architecture consisting of pre-trained Inception-
v3 parameters trained on ImageNet data together with the
LSTM decoder, we were able to achieve 88.9% F2 test ac-
curacy – well within five percent of the state-of-the-art en-
semble models used by industry leaders.

1. Introduction

According to National Geographic, almost a fifth of the
Amazon rainforest has been cut down in the last 40 years
[18]. Estimates of the extent of the deforestation, however,
are both difficult to ascertain and often inaccurate. Given
this dearth of reliable and precise estimates, a compre-
hensive understanding of the natural and/or anthropogenic
changes in the Amazon is still lacking [18].

Rudimentary methods for quantifying and characterizing
deforestation – particularly in the Amazon – have proven
inadequate for several reasons [20]. For one, the existing
models often lack the ability to differentiate human-caused
and natural forest loss. Secondly, these models often take
in coarse-resolution imagery that does not allow the detec-
tion of small-scale deforestation and local forest degrada-
tion [20]. The prevalence of selective logging which only

logs select tree species, for example, can conceal significant
logging for low-resolution images [19].

Recent improvements in satellite imaging technology
have given rise to new opportunities for more accurate
quantification of both broad and minute changes on Earth,
including deforestation. Indeed, Planet1 (one of many
smaller aero-astro companies entering the image analysis
space) and its Brazilian branch, SCCON, collected novel
satellite image chips with more than 10x the resolution
of traditional Landsat and MODIS images and launched a
Kaggle challenge in April of 2017 (titled Planet: Under-
standing the Amazon from Space 2) in order to gain fur-
ther insight into how and why Amazonian deforestation is
occurring [20]. More specifically, the challenge is to la-
bel Planet’s image chips with atmospheric conditions, land
cover, and land use. The teams are provided with labeled
training and testing images of the Amazon river basin taken
from Planet Labs satellites; the chips (images) themselves
are available on Kaggle in GeoTiff and JPG format, contain-
ing four bands (channels): RGB-NIR (RGB only for JPG)
[20].

Given the dynamic labeling – with training images hav-
ing between one and fourteen different labels – we will
experiment with various multi-class, multi-label classifiers
using state-of-the-art deep learning approaches borrowing
from existing image classification model architectures.

At test time, our classification algorithm will take satel-
lite images as input and will produce a dynamically-sized
set of tags as output. Each image’s predictions, i.e. its
outputed labels, will be written to a submission file that
enumerates the image name along with its predicted tags,

1https://www.planet.com/
2https://www.kaggle.com/c/planet-understanding-the-amazon-from-

space

1



as specified by the Kaggle competition submission rules,
which will be evaluated using the F2 metric by Kaggle 3.

2. Related Work

Multi-label satellite image classification has been a task
of interest ever since the first multi-spectral remote sensing
imagery became available (to civilians) in the early 1970s.
The overall approach has remained conceptually the same
- record satellite observations, derive a feature vector for
the image, run a classification algorithm, produce classifi-
cation labels [2, 1]. In the earlier decades up through the
2000s, the most common approach was to extract feature
vectors using methods such as image filtering, PCA, or clus-
tering algorithms, and to then use simple regression-based
classification thereafter [5, 1, 4]. Unfortunately, these early
models were not particularly illuminating or powerful - over
the period of 1989 to 2003, a study of multilabel satellite
image classification algorithms was conducted, concluding
that “there has been no demonstrable improvement in clas-
sification performance over 15 years [1].”

In the later 2000s, remote sensing-focused image pro-
cessing communities began collaborating and communi-
cating with artificial intelligence and computer vision re-
searchers to advance techniques for classification [4, 2, 8,
3]. Hybrid methods that used a combination of manual
tagging and primitive machine learning techniques became
more popular [2]. For example, when sample land cover
sites were available (called ‘training sites’), the user would
manually select representative samples for a given class or
label [3, 4, 2]. Based on these training sites, a ‘signature
file’ for the given class would be developed; predictions for
new images would then be based on maximum-likelihood or
minimum-distance estimation techniques [3, 4]. These su-
pervised learning techniques were integrated into software
platforms like ArcGIS, but if sample training sites were
unavailable, it was also possible to use unsupervised tech-
niques like k-means [6, 16]. In this case, the user would pro-
vide the number of clusters for the algorithm to group the
pixels into. The user would then use those results to manu-
ally identify which clusters correspond to which classes (or
merge duplicate clusters corresponding to the same class)
[5, 6]. These techniques are still in use today, as ArcGIS
(and other comprehensive remote-sensing analytics plat-
forms) is the prevailing tool in many research communities
[9, 16].

However, with increased computing power, more neu-
ral network-based frameworks have become feasible for use
in large scale remote sensing data analysis, and researchers
are increasingly using these approaches with dramatically
improved results [15, 9]. State of the art techniques use a

3https://www.kaggle.com/c/planet-understanding-the-amazon-from-
space#evaluation

multitude of fully-connected and convolutional layers with
non-linear activations to project the image data onto a pre-
defined feature space that is then used to predict probabil-
ities of given labels [13, 8, 9, 14]. This approach allows
models to directly craft the image features based on the spe-
cific labels we want to predict (in essence combining the
feature-extraction and classification steps from the original
paradigm posed in the 1970s) [1, 15].

These CNN approaches take on a variety of different
architectures. Some simply use a binary sigmoid cross-
entropy loss (as opposed to softmax which is more common
for single-label classification) [10, 7]. Rather than taking
the argmax as a softmax-based model would, the binary
sigmoid cross entropy loss focuses on deciding whether a
given label applies or does not apply. The label is applied
as such if its corresponding logit exceeds a certain probabil-
ity threshold. A great deal of research has played with these
thresholds and the benefits of including those as model pa-
rameters [10, 7], with considerable success. However, one
issue with this method is that it ignores possible relation-
ships and interdependencies between labels.

Other models have sought to address this problem, ap-
plying techniques rooted in statistics, NLP and other areas
[11, 12, 8, 13]. For example, DeepSat uses a wide variety of
CNN architectures to predict four or six different land cover
classes [9]. Alternatively, multi-instance multi-label ap-
proaches use multi-layer perceptrons to extract regional fea-
tures, to then pass to a second stage that is meant to capture
connections between labels and regions as well as correla-
tions between labels [12, 11]. A still more unique approach
was proposed by Wang et al. that uses a CNN-Recurrent
Neural Network (RNN) approach to extract image features
(CNN) and then predict a series of labels (RNN) that cap-
tures inter-label dependencies while also maintaining label
order invariance [8].

Our approach, described in the Methods section below,
seeks to both evaluate and synthesize some of the more suc-
cessful techniques within the scope of a multi-label satellite
image classification problem, as well as develop novel in-
frastructures of our own that improve upon these works.

3. Methods

3.1. Models

The key classifiers used in our project include a Softmax
Cross-Entropy (CE), a Sigmoid CE, and a joint Softmax-
Sigmoid (SS) CE loss and evaluation as well as a LSTM
cell structure. Each of these were used on top of baseline,
transfer and fine-tuned pre-trained CNN models to exploit
inherent structure in our dataset.

Softmax/Sigmoid Baselines. Most of the introductory
networks seen in CS231n lectures and assignments are de-
signed for single label classification; they make use of the

2



softmax CE loss and assign the most likely label out of a
possible N labels based on that softmax result (grabbing
the argmax across the final N -vector) [13]. As such, we
began with this approach by designing a single-label clas-
sifier to attempt to predict weather labels for each image.
Because each image in the dataset has one and only one
weather label, we knew softmax classification could be ap-
plied. Of course, as our training images were by no means
limited to one weather label, we soon moved towards a sig-
moid classifier. The softmax loss scheme, while advanta-
geous for single-label classification, is not as well-suited
for multi-label classification [10, 8, 13] for a variety of rea-
sons but most glaringly due to the fact that each label is
no longer mutually exclusive in a multi-label classification
task. The common fix for this is to alter the loss func-
tion from softmax CE loss to sigmoid CE loss [10]. Sig-
moid CE is primarily used for binary classification, and so
is able to evaluate which labels, out of N possible, should
be set to ‘on,’ as opposed to selecting a single best label
[10]. Indeed, we first attempted this approach, with suc-
cess, using a small 2-Layer CNN to get baseline results
(the architecture is a simplified version of a test model that
appears in a PyTorch Starter Kit written by a fellow Kag-
gle challenge participant[28]). However, one issue with
this approach is that it does not make use of unique struc-
ture within our dataset, which motivated our more advanced
Softmax-Sigmoid joint loss approach.

Softmax(x)i =
exi∑n

k=1 e
xk

Sigmoid(x) =
1

1 + e−x

Inception-SS. In order to exploit unique weather labels
(every satellite image has one and only one weather label
clear, cloudy, partly_cloudy, or haze) and mul-
tiple (zero to many) land use/land cover labels, we moved
towards a hybrid loss function which applied single-label
classification (softmax loss) for the weather tags and multi-
label classification (sigmoid loss) for the rest of the land use
and land cover tags[20].

After getting aforementioned 2-layer CNN baseline[28]
off the ground, we realized we would need to leverage more
advanced CNN architectures with transfer learning in order
to develop the best model possible. As a result, we replaced
our framework’s back-end with GoogLeNet’s Inception-v3
[17] trained on ImageNet images. Our initial approach, in
line with the typical transfer learning paradigm of extract-
ing and training on the final layer of a pretrained network
[21], was to feed our images through pre-trained, but frozen
Inception parameters and from there calculate the SS CE
loss as described above. A figure depicting this model is
shown in the purple box in 3. We will refer to this Sigmoid-
Softmax with Inception-v3 pretrained features in later sec-

tions with the ‘ISS-’ prefix.
Inception-LSTM. This model was designed to exploit

the label ordering in the training dataset as well as the
fixed ‘vocabulary’ (only 17 possible labels). The idea was
loosely inspired by Assignment 3’s LSTM captioning prob-
lem, which trained an LSTM (Long-Short Term Memory
cells)[30] based architecture on the Microsoft COCO Cap-
tioning dataset to be able to generate a predicted image cap-
tion one word at a time [22].

LSTMs follow a structure similar to that of a “Vanilla”
RNN. Both architectures consist of cells (Fig.1) that make
forward steps in both “time” and “depth”(Fig.2)[31].What
differentiates an LSTM from an RNN network is the smooth
flow of gradients represented by the red arrows in Fig 1.
During back-propagation, the RNN network gradients have
a tendency to explode or go to zero as the gradients are
all connected through multiplication whereas the gradients
passed backwards by the LSTM cell are connected through
addition (thus avoiding the multiplicative relationship that
leads to trouble in Vanilla RNN).

Figure 1. An RNN (left) and LSTM (right) Cell [31]

Figure 2. An LSTM Cell [31]

If we look at Fig. 2, the red rectangles represent input
features, the green rectangles are LSTM cells, and the blue
rectangles represent the scores (or predictions) of the LSTM
network. As this network begins training and evaluating at
time “0” (left of Fig 2), one can imagine how such a network
produces ordered captions as it predicts a new word at each
time step.

Although image captioning techniques are not typically
applied to multi-label image classification [8, 13, 14, 9],
we noted that the consistent ordering of the image labels
in the training set (labels will always be seen in the order
‘clear primary’ as opposed to ‘primary clear’) as well as the
comparatively low number of labels (and thus small “vo-
cabulary”) might perhaps make our problem better suited
for RNN-based techniques. Using this framework, our la-
bels would be considered as “captions,” beginning with a

3



<START> token and ending with an <END> token. In the
same way it probabilistically predicts any other label, the
model will capture the dynamic sizing of the label sets by
learning when to predict an <END> token. Overall, our ar-
chitecture takes in image features generated by Inception-
v3 (size 2048 vectors) and feeds into a fully-connected layer
into an LSTM cell, and then into a temporal fully connected
layer. From there, the temporal softmax weights predict a
single label for a given timestep and the loss is propagated
back through the network to update the model parameters.
Figure 3 depicts this architecture in the blue box, showing
the flow from the FC layer through to the temporal soft-
max classification step. After the model has been trained,
predictions are formed by feeding new images through the
model and generating “captions” (series of labels) one step
at a time until an <END> token is predicted.

Figure 3. Model architecture for SS and LSTM.

4. Dataset and Features
4.1. Dataset

The Kaggle-provided datasets are divided into both
train-[type] and test-[type] input images where
the [type] is either .tiff or .jpg format. The data has
a ground sample distance (GSD) of 3.7m and an orthorec-
tified pixel size of 3m. Each image file is a 256x256 pixel
(947.2m x 947.2m) “chip” which is sampled from a larger
6600x2200 pixel “Planetscope Scene [20].”

In total, Planet and Kaggle supplied 40,479 training im-
ages and their corresponding labels [20]. Of these ∼ 40K
training images we split 4K off to be our validation set, and
ultimately tested our models on the hidden set of ∼ 60K test
images (via submission to the Kaggle challenge).

The 17 possible tags for each chip are divided into
three categories: cloud cover, common labels, and
less common labels (see example chips in 4). Each
chip has exactly one cloud cover label taking one of

four values: cloudy, partly cloudy, haze, and
clear. The common and less common labels, in
turn, take zero or more values of primary (the la-
bel for primary rainforest), water, habitation,
agriculture, road, cultivation, bare ground
and slash burn, selective logging, blooming,
conventional mine, artisinal mine,
blow down, respectively [20]. Further worth noting
is that the distribution of labels was quite unbalanced as
evidenced in 5.

Figure 4. Labeled Chips

Figure 5. Label Occurences.

4.2. Preprocessing and Feature Extraction

Inception bottlenecks. Our choice of Inception-v3 as
our back-end for transfer learning meant we had to fol-
low certain preprocessing steps to ensure that our images
would be similar in form to those that Inception was trained
on (for example, certain networks have subtracted out the
mean of the image, or have normalized the range of pixel
values). Inception has a variety of relatively user-friendly
resources that walk readers through transfer learning and
retraining the network [23, 24, 25]. GoogLeNet has also
written scripts that will feed JPG images through a prepro-
cessing pipeline and up through the frozen section of the
model for feature extraction [25]. These resulting 2048-
vectors were the features we used for our model frontend.
(Note: one issue we ran into was that the Kaggle-provided
JPG images were in CMYK format, whereas Inception ex-
pects RGB. As a result our early models were aggressively
mediocre since the model was having a lot of difficulty in-
terpreting our 4-channel image.)

4



Data augmentation. Because our model architectures
added layers onto the existing Inception-v3 structure (and
hence increased the number of model parameters), we
wanted to prevent our model from overfitting. In order to
mitigate this issue, we distorted our training images. In par-
ticular, we experimented with random left-right image flip-
ping, random up-down image flipping, random number of
image rotations, random cropping of 5-10% of the image,
random scaling of 5-15% of the image, and random bright-
ness scaling (i.e. multiplication of pixel values by 5-10%).

By adding random distortions to the training images at
each epoch we prevented the model from seeing the same
images many times and generally succeeded in preventing
overfitting as our validation and test accuracies show in the
Experiments section below.

5. Experiments
5.1. Performance Metrics

Table 1 shows our F2 performance, calculated as fol-
lows:

F2 = (1 + β2)
pr

β2p+ r
,

where p =
tp

tp+ fp
, r =

tp

tp+ fn
, β = 2

Variables p and r are precision and recall respectively, while
tp/fp and tn/fn represent true/false positive and negatives.
The final score is given as the mean F2 score over all exam-
ples in the test set.

Overall, we were able to achieve an F2 score within 5%
of top teams in the Kaggle challenge, eventually reaching
245th on the leaderboard. Although the Kaggle challenge
leaderboard is based on F2 accuracy accuracy alone, we
will also look at loss plots, one-to-one accuracy, example
predictions, and final layer logits to get a better sense of our
model’s strengths and weaknesses. With the ‘one-to-one’
metric we are simply referring to the percentage of matches
among all 17 ground truth versus predicted possible labels.
More precisely:

one-to-one =
tp+ tn

tp+ fp+ tn+ fn

5.2. Performance Results

Following implementation of our more sophisticated
models, both training and validation F2 scores increased
uniformly by ∼36%, achieving a final highest score of
88.941% with ISS-20. As our loss graphs show, after suffi-
cient iterations, both our training and validation losses con-
verged to comparable values.

As we can see in Table 1, even our baseline model per-
formed with high one-to-one accuracy. In juxtaposition
with the poor F2 scores for the baseline model, one-to-one

accuracy showed itself as only a vague indicator of success
early on.

While ISS-21 and ISS-19 achieved higher Validation F2
and One-to-One accuracy, ISS-20 gave us our best Test F2
result. Given the sparsity in the presence of most of the
classes in the data set, our model does a very good job of
generalizing and learning to accurately handle these rare
class cases.

We have also included loss plots below, serving as a con-
firmation that our model was in fact training properly, and
additionally indicated convergence of training and loosely
indicated generalizability based on validation loss.

Model One-to-one Accuracy / F2 Accuracy
Train Val Test

Sigmoid
Baseline

90.0 / 64.0 91.0 / 65.0 - / -

LSTM 96.3 / 88.7 95.0 / 87.1 - / 87.212
ISS-7 92.0 / 79.0 93.0 / 74.0 - / -
ISS-19 95.5 / 88.9 95.6 / 88.9 - / 87.282
ISS-20 94.6 / 90.5 94.9 / 87.6 - / 88.941
ISS-21 95.0 / 90.3 95.6 / 89.1 - / 88.731
I-FT 96.2 /88.2 96.6 / 88.9 - / -

Table 1. Accuracy Evaluation Results

Figure 6. ISS-21 F2 Train (orange) + Validation (blue) Accuracy

Figure 7. Baseline CNN Loss

5.3. Example Predictions

Visualizing predictions from both the ISS- and LSTM
models gives insight into the predictive mechanisms of
these different architectures and algorithms.

Figures 11, 12, and 13 show a few examples of image
predictions generated by the Inception-LSTM model. The

5



Figure 8. ISS-7 Train (orange) + Validation (blue) Loss

Figure 9. ISS-21 Train (orange) + Validation (blue) Loss

Figure 10. Inception-LSTM Loss

heat map plots on the right of the figure show the probability
distributions at each time step; the darker the square, the
higher the probability. Starting from the top, we see the
first predicted label (i.e. darkest square), continuing until
the last row, where the model predicts the <END> token.
The first image/prediction pair display a relatively common
label set, and we can see that the model is confident in its
predictions. The second pair demonstrates an intermediate
difficulty image, and also showcases the models ability to
predict weather patterns. Despite the image showing similar
characteristics to a haze or cloudy image, it correctly (if
hesitantly) guesses partly cloudy. The final pair displays a
more difficult label set, as we can see the model is not very
confident in its predictions (i.e. for each prediction step, the
difference between the darkest cell, second darkest cell, etc.
is less obvious than in the previous two examples).

Figure 11. Example 1 LSTM Image and Prediction

Figure 12. Example 2 LSTM Image and Prediction

Figure 13. Example 3 LSTM Image and Prediction

We can also extract more general insights from these ex-
amples by looking at the other predictions the models might
have made. For example, we see from the LSTM predic-
tions that the model only considers predicting cloudy on
the first timestep, this indicates that the model was able to
figure out that if the image is cloudy, it will never have any
other tags associated with it (everything else is obscured).
We can also determine which examples the model struggles
most with based on timesteps where it is a close call be-
tween labels - in Example 3 (Fig. 13) at timesteps 5 and 6,
we can see that the probabilities for both road and water are
comparable. Indeed, from the air, roads and bodies of wa-
ter (usually rivers) tend to look like snaking brown lines of
varying thicknesses, so it is not unsurprising that the model
would struggle with these types of examples (this is also an
example where incorporating the Near-IR channel would be
beneficial).

Figure 14. Example 1 ISS- Image and Predictions

The plots in Figures 14 and 15 demonstrate exam-
ple predictions generated by ISS-21, our more successful
Inception-SS model, and ISS-7, an intermediate model of
a similar architecture. For each image, the plots show the
probabilities with which the model predicts a given label.
The first four categories on the x-axis correspond to weather
labels, and the rest correspond to land use and land cover.

6



Figure 15. Example 2 ISS- Image and Predictions

The first image, 11111.jpg, gives an example of an image
that was previously misclassified by ISS-7. Its ground truth
label set is partly_cloudy and primary; but our old
model predicted clear and primary instead. As we can see,
the ISS-21 distribution is able to surpass ISS-7’s hesitance
and discern that the image’s weather label is in fact partly
cloudy.

The second image, 11112.jpg, is an example that shows
that although ISS-21 is a vast improvement on ISS-7,
it is still not perfect. The ground truth label set is
agriculture, clear, primary, and water. Al-
though the ISS-21 model is more confident in its prediction
of clear and agriculture, it loses confidence in its labeling
of primary and instead chooses the ”road” label instead of
”water.” As mentioned in the discussion of LSTM example
predictions, roads and water features do in fact look similar
so this is a trickier example, but still shows areas where the
model could be improved.

5.4. Hyperparameter Tuning

In order to achieve the performance metrics discussed
above, diligent hyperparameter-tuning was a crucial step.
We ran a variety of tests to evaluated the effect of hyper-
parameters on our various models, eventually submitting
four Inception-based transfer learning models to the Kag-
gle leaderboard. The three ISS- models were run using two
trained affine layers on top of the pretrained network into
a softmax-sigmoid joint CE loss. The LSTM model sub-
mitted used a single trained affine layer, fed into an LSTM
cell, along with a temporal fully-connected layer into a cor-
responding temporal softmax CE loss (3). The hyperparam-
eters for each submission can be found in Table 2.

Model Optimizer LR LRD Dropout Epochs
LSTM Adam 0.0001 0.98 0.2-0.3 7
ISS-19 Adadelta 0.5 0.50 0.2-0.3 ∼3
ISS-20 RMSProp 0.0005 0.90 0.2-0.3 ∼3
ISS-21 Adam 0.0005 0.96 0.2-0.3 ∼3

Table 2. Inception Transfer Models

In addition to the parameters in 2, we also looked at
transfer learning layers to train as well as number of training
steps in order to optimize our model. Initially following a

standard transfer learning approach, we kept the Inception
pretrained waits up to a new final affine layer, which we
trained ourselves. Trying various learning rates and learn-
ing rate decay schedules, we found that we could generally
achieve rapid convergence. As shown in Fig. 16, the dark
blue, light blue, and green schedules certainly converged by
∼500 steps, corresponding to less than two epochs on our
training data of ∼32,000 images and training batch sizes of
100 images.

After reaching convergence with the lone affine layer, we
experimented with training additional top layers, namely
multiple affine layers with dropout, as well as fine-tuning
the full Inception model (I-FT)[29] (i.e. the previously
frozen model parameters, see the Inception architecture in
18). As shown in Fig. 17, we were able to decrease our loss
with an additional top layer. Unfortunately, as shown in Fig.
19 when training the full Inception model, this modification
did not significantly lower our loss.

Figure 16. Hyperparameter Tuning.

Figure 17. Impact of Additional (Top) Affine Layers.

-

7



Figure 18. GoogLeNet Inception Layers.

Figure 19. Fully-Finetuned Inception V3

5.5. Thresholding

Even after optimizing our models to achieve low loss
results, we still observed poor F2 accuracy which is what
our classifier was to be ultimately judged upon. In order to
address this, we optimized our predictions post-training to
improve F2 accuracy. Specifically, we did a greedy search
along hundreds of discrete threshold values per label F2
score to accumulate individual ’optimized’ thresholds for
every label above which we would predict a label at valida-
tion/test time. Initially, we predicted a label if the outputted
logits were over constant threshold of 0.5 (i.e. 50%) for
all labels; however, as Table 3 shows, a constant threshold,
especially 50%, was often a poor thresholding value.

Indeed, given that F2 accuracy penalizes false negatives
more so than false positives it came as little surprise that
lower thresholding values often gave better validation F2
accuracy scores. For test time predictions, we ultimately
used per-label threshold values which (in our validation set
experimentation) tended to outperform constant threshold-
ing values. Table 3 below shows that the ’optimized’ per-
label thresholding gives a slight boost relative to the best
constant threshold value.

In this case, the ‘optimized’ threshold values were:
cloudy ≥ 0.109, partly cloudy ≥ 0.123, haze ≥ 0.154,

clear ≥ 0.15, slash burn ≥ 0.104, booming ≥ 0.1, pri-
mary ≥ 0.191, conventional mine ≥ 0.1, water ≥ 0.286,
cultivation ≥ 0.1, artisinal mine ≥ 0.118, habitation ≥
0.114, bare ground ≥ 0.1, blow down ≥ 0.164 agriculture

Thresholds F2 Accu-
racy

0.160 90.11
0.175 90.13
0.189 90.14
0.204 90.11
0.218 90.04
0.233 89.97
0.248 89.84
0.262 89.70
0.277 89.58
0.292 89.44
0.306 89.31
0.321 89.17
0.335 88.99
0.350 88.85
0.500 87.79
Optimized 90.45

Table 3. ISS-20 F2 Scores by Threshold Values. These F2 scores
correspond to the accuracy when predicting labels over constant
threshold values shown in the left column. The ‘optimized’, bot-
tom row shows the corresponding F2 accuracy when choosing
variable thresholding values by label.

≥ 0.104, road ≥ 0.163, selective logging ≥ 0.1.

6. Conclusions
With the current boom in satellite earth-imaging compa-

nies the obvious challenge lies in accurate and automated
interpretation of the massive datasets of accumulated im-
ages. In this project, we tried to tackle the challenge of
understanding one subset of satellite images – those captur-
ing images of the Amazon rainforest – with the particular
goal of aiding in characterization and quantification of the
deforestation of this area.

Using pre-trained state-of-the-art models such as
GoogLeNet’s Inception architecture we were able to create
architectures that exploited the structure of our dataset in
multiple ways and achieved strong performance accuracy.
Still, moving forward, there are still various milestones we
wish to pursue. Specifically, we are currently working on
exploiting the labeling (i.e. hierarchically predictions which
exploit the weather label, common land type, then rare land
type natural ordering), ensembling multiple optimized mod-
els including transfer models using ResNet and other pre-
trained deep CNN algorithms, and leveraging the informa-
tion in the .tiff files (specifically the Near-IR channel
which tends to be very informative in remote-sensing appli-
cations). Overall, experimenting with and optimizing our
suite of model frameworks served to be an illuminating and
exciting final project, especially when applied to a topical
and impactful real-world Kaggle challenge.

8



References
[1] G.G. Wilkinson. “Results and implications of a study

of fifteen years of satellite image classification experi-
ments.” IEEE Transactions on Geoscience and Remote
Sensing (Vol. 43, No. 3). 2005.

[2] Sunitha Abburu, Suresh Babu Golla. Satellite Image
Classification Methods and Techniques: A Review. In-
ternational Journal of Computer Applications, (Vol.
119, No. 8). 2015.

[3] Sayali Jog, Mrudul Dixit. Supervised classification of
satellite images. Conference on Advances in Signal
Processing (CASP), 2016.

[4] George F. Hepner. Artificial neural network classifi-
cation using a minimal training set. Comparison to
conventional supervised classification. Photogrammet-
ric Engineering and Remote Sensing, (Vol. 56, No. 4).
1990.

[5] Turgay Celik. Unsupervised Change Detection in Satel-
lite Images Using Principal Component Analysis and k-
Means Clustering. IEEE Geoscience and Remote Sens-
ing Letters, (Vol. 6, No. 4). 2009.

[6] ArcGIS. What Is Image Classification? ArcGIS 10.5
Help Site, 2017.

[7] A. McCallum. Multi-label text classification with a
mixture model trained by EM. AAAI99 Workshop on
Text Learning. 1999.

[8] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang,
Chang Huang, Wei Xu. CNN-RNN: A Unified Frame-
work for Multi-Label Image Classification. The IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016, pp. 2285-2294.

[9] Saikat Basu, Sangram Ganguly, Supratik Mukhopad-
hyay, Robert DiBiano, Manohar Karki, Ramakrishna
Nemani. DeepSat A Learning framework for Satel-
lite Imagery. Computer Vision and Pattern Recognition,
2015. arXiv:1509.03602

[10] Rong-En Fan, Chih-Jen Lin. A Study on Threshold
Selection for Multi-label Classification. Advances in
neural information processing systems, 2017. A Study
on Threshold Selection for Multi-label Classification

[11] Zenghai Chena, Zheru Chia, Hong Fua, Dagan Fenga.
Multi-instance multi-label image classification: A neu-
ral approach. Neurocomputing. (Vol. 99). 2012.

[12] Zheng-Jun Zha, Xian-Sheng Hua, Tao Mei, Jingdong
Wang, Guo-Jun Qi, Zengfu Wang. Joint multi-label
multi-instance learning for image classification. Com-
puter Vision and Pattern Recognition. 2008.

[13] Yunchao Wei, Wei Xia, Junshi Huang, Bingbing Ni,
Jian Dong, Yao Zhao, Shuicheng Yan. CNN: Single-
label to Multi-label. Journal of LaTex Class Files (Vol.
6, No. 1). 2014. arXiv:1406.5726

[14] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhi-
heng Huang, Alan Yuille. Deep Captioning with
Multimodal Recurrent Neural Networks (m-RNN).
Computer Vision and Pattern Recognition. 2015.
arXiv:1412.6632v5

[15] H. Bischof, W. Schneider, A.J. Pinz. Multispectral
classification of Landsat-images using neural networks.
IEEE Transactions on Geoscience and Remote Sensing
(Vol. 30, No. 3). 1992. IEEE Link

[16] V. Mnih and G. Hinton. Learning to detect roads in
high-resolution aerial images. European Conference on
Computer Vision (ECCV). 2010. Learning to Detect
Roads in High-Resolution Aerial Images

[17] Christian Szegedy, Vincent Vanhoucke, Sergey
Ioffe, Jonathon Shlens, Zbigniew Wojna. Rethink-
ing the Inception Architecture for Computer Vi-
sion. Computer Vision and Pattern Recognition. 2015.
arXiv:1512.00567

[18] Scott Wallace. Amazon Rainforest, Deforestation,
Forest Conservation. National Geographic. Farming
the Amazon

[19] Robinson Meyer. Terra Bella and Planet Labs’ Most
Consequential Year Yet. The Atlantic, 2016. Terra Bella
and Planet Labs’ Most Consequential Year Yet

[20] Planet: Understanding the Amazon from Space. Kag-
gle. Challenge link

[21] Andrej Karpathy. Transfer Learning, 2017. CS231n:
Transfer Learning

[22] CS231n Course Staff, CS231n Assignment 3. 2017.
Assignment 3

[23] Tensorflow. Retraining Inception’s Final Layer for
New Categories. 2017. How to Retrain Inception’s Fi-
nal Layer for New Categories

[24] Radek Bartyzal. Multi-label image classification with
Inception net. Medium. April 2, 2017. Multi-label im-
age classification with Inception net

[25] Google Developers. Image Classification Transfer
Learning with Inception v3. 2017. Transfer Learning
with Inception v3

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian
Sun. Deep Residual Learning for Image Recogni-
tion.arXiv:1512.03385v1, 2015.

9

http://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/image-classification/what-is-image-classification-.htm#ESRI_SECTION1_BB176EE6A3F343E3A6F5F204601204D5
http://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/image-classification/what-is-image-classification-.htm#ESRI_SECTION1_BB176EE6A3F343E3A6F5F204601204D5
https://arxiv.org/abs/1509.03602
https://pdfs.semanticscholar.org/f3eb/f945aba8d70b8d7daf14021fe1220752f0f7.pdf
https://pdfs.semanticscholar.org/f3eb/f945aba8d70b8d7daf14021fe1220752f0f7.pdf
https://arxiv.org/pdf/1406.5726.pdf
https://arxiv.org/abs/1412.6632v5
http://ieeexplore.ieee.org/document/142926/
http://www.cs.toronto.edu/~fritz/absps/road_detection.pdf
http://www.cs.toronto.edu/~fritz/absps/road_detection.pdf
https://arxiv.org/abs/1512.00567
http://environment.nationalgeographic.com/environment/habitats/last-of-amazon/
http://environment.nationalgeographic.com/environment/habitats/last-of-amazon/
https://www.theatlantic.com/technology/archive/2016/03/terra-bella-planet-labs/472734/
https://www.theatlantic.com/technology/archive/2016/03/terra-bella-planet-labs/472734/
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/assignments2017/assignment3/
https://www.tensorflow.org/tutorials/image_retraining
https://www.tensorflow.org/tutorials/image_retraining
https://medium.com/towards-data-science/multi-label-image-classification-with-inception-net-cbb2ee538e30
https://medium.com/towards-data-science/multi-label-image-classification-with-inception-net-cbb2ee538e30
https://codelabs.developers.google.com/codelabs/cpb102-txf-learning/index.html?index=..%2F..%2Findex#0
https://codelabs.developers.google.com/codelabs/cpb102-txf-learning/index.html?index=..%2F..%2Findex#0


[27] PyTorch ResNet

[28] Mamy Ratsimbazafy. Starting Kit for PyTorch Deep
Learning, 2017.

[29] Justin Johnson. PyTorch Finetuning Example, 2017.

[30] Sepp Hochreiter, Jrgen Schmidhuber. Long Short-
Term Memory, 1997.

[31] Fei-Fei Li, Justin Johnson, Serena Yeung. CS 231n
Lecture Slides, Lecture 10 , 2017.

10

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://www.kaggle.com/mratsim/starting-kit-for-pytorch-deep-learning
https://www.kaggle.com/mratsim/starting-kit-for-pytorch-deep-learning
https://www.kaggle.com/mratsim/starting-kit-for-pytorch-deep-learning
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

