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Abstract 

 

This project explored different convolutional neural 

network (CNN) architectures for the multilabel 

classification challenge of Amazon rainforest satellite 

images. In this project, I examined how different layers and 

hyperparameters change the performance of neural 

network, including training time, training f2 score and test 

f2 score. The best model I have found is a 10-layer 

convolutional neural network, which has 0.89 training f2 

score and 0.88 test f2 score.  

 

1. Introduction 

Every minute, the world loses an area of forest the size of 

48 football field, most of which are caused by deforestation 

in Amazon Basin. Thus, to help governments and local 

stakeholders understand the location of deforestation and 

human encroachment on forests, Planet, the designer, and 

builder of world’s largest constellation of Earth-imaging 

satellites, has launched a Kaggle competition – Planet: 

Understanding Amazon from Space – to analyze 

small-scale deforestation and human activity influences 

from Amazon satellite images. The goal of this challenge is 

to correctly label images with atmospheric conditions, 

common land cover/land use phenomena, and rare land 

cover/land use phenomena. 

For this project, the input is 256*256 color satellite 

images, and the algorithm uses a convolutional network to 

output a set of predicted labels. Training data and test data 

in the challenge is provided by Kaggle. In this project, I will 

explore and analyze how different convolutional neural 

network models perform in terms of training time, f2 score 

and generalization ability. 

2. Related work 

Research on satellite image processing has over 20 years’ 

history. Simple neural network structure with only fully 

connected layers has been used as a satellite image classifier 

early in 1995[1]. In recent years, especially since 2015, 

training a deep neural network becomes easier with larger 

computational power, bigger training datasets and better 

image quality. Thus, convolutional neural network has 

become a popular tool for satellite image analysis in many 

areas of application, including image classification [2], land 

use classification [3], pattern detection in urban 

environment [4], solar power plant detection [5], 

orthoimagery segmentation [6], nighttime sky/cloud 

segmentation [7] and face-like structure detection [8]. 

Also, with the emergence of large dataset with 

high-resolution remote sensing (HRRS) imagery, different 

neural network models have been created and tuned for 

higher accuracy. Examples models such as traditional 

neural network [9], deep convolutional neural network [10], 

multi-channel pulse coupled neural network (m-PCNN) [5] 

and recurrent neural network [11], have all been used to 

achieve a high accuracy on high-resolution satellite images. 

In addition, methods other than neural networks are still 

being used for specific tasks. Statistical methods like 

contrast statistical analysis (CSA) [12], singular value 

decomposition (SVD) [13], temporally contiguous robust 

matrix completion (TECROMAC) [14] and non-additive 

entropy [15] has been used for quality evaluation, image 

de-noising, matrix completion, image classification and 

segmentation.  

For this project, I will mainly evaluate the performance of 

deep convolutional neural networks on high-resolution 

Amazon satellite images. 

3. Problem Statement and Challenges 

The Kaggle challenge is a multilabel classification 

problem. The input is colored satellite images with 256*256 

resolution. The output can be one or multiple labels from 17 

possible classes – agriculture, artisinal_mine, bare_ground, 

blooming, blow_down, clear, cloudy, conventional_mine, 

cultivation, habitation, haze, partly_cloudy, primary, road, 

selective_logging, slash_burn, and water. Figure 1 has some 

sample images with corresponding labels. 

The evaluation metric used for this competition is the 

average f2 score, which basically takes a weighted 

geometric average between precision and recall. In the case 

of f2 score, recall has a much higher importance than 

precision. In other words, false negatives are more 
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Figure 2: Class label distribution of training data. 

detrimental to the score than false positives – it is worse to 

miss a label than to add an incorrect label to images. In later 

sections, we will explore how hyperparameters and decision 

boundaries can be adjusted accordingly to achieve a higher 

f2 score. 

Another challenge is that there could be noise in the 

labels for the training data. Since the training images are 

labeled manually, the labels are not guaranteed to be 100 

percent correct, and the challenger needs to be aware of 

possible wrong labels in training process. I have not 

examined incorrect labels in this project, but there are many 

existing statistical methods, such as principal component 

analysis (PCA), that can be used for image preprocessing to 

reduce the noise and further improve correctness. 

 

4. Data 

There are 40479 training images and 61191 test images. 

Each image is a 3-channel color image with 256*256 pixels. 

For training, I used 30000 (75%) images as training set and 

10479 (25%) images as validation set. Test set is composed 

of all test images. Since Kaggle provided an easy interface 

to check the test performance of 66% (40386) test images, I 

moved all training images that used to be in test set into 

validation set, so that all training images are used for 

training and validation. 

One thing to note about the data set is that most labels are 

highly skewed. As shown in Figure 2, most labels are only 

assigned to less than 20% of training data. In particular, 

labels like artisinal_mine, blooming, blow_down, 

conventional_mine, selective_logging and slash_burn, have 

proportion less than 1% of all data. On one side, correct 

classification of these labels becomes a particularly hard 

and challenging part of the competition. On the other hand, 

misclassification of these labels will have a very small effect 

on average score.  

 

5. Methods 

5.1 Initial 4-layer CNN 

 The first model I tried for this project is the CNN model I 

used in assignment 2, which is a 4-layer model. The 

structure is as follows. 

 Conv (32 3*3 filters, stride 2) – batch norm – ReLu – 

dropout – max pooling 

Conv (32 3*3 filters, stride 1) – batch norm – ReLu – 

dropout – max pooling 

 Affine (32768*1024) – batch norm – ReLu 

Affine (1024*17) 

 The loss function is changed from SoftMax cross entropy 

to sigmoid cross entropy. The initial accuracy is 89%, which 

seems reasonable, but the training f2 score is very low – 

only 0.59. Upon further inspection, I realized that the cause 

is incorrect choice of loss function. 

Figure 1: Sample training images with labels. 
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5.2 Classification method and loss function 

There are two common loss functions for multilabel 

classification – sigmoid cross entropy loss and support 

vector machine (SVM) with hinge loss. 

As I mentioned, I started with binary classification and 

sigmoid cross entropy loss, but the result is not very good. 

Upon looking at the prediction labels, I realized that the 

classifier tends to classify all images as clear and primary, 

which are the two most dominant class labels in training 

data. It seems like all images are classified in the same way 

– they only have labels that appear in more than 50% 

training images. This is not ideal. 

As a result, I changed the last layer to SVM and hinge 

loss, but keeping the other CNN structure the same. 

Immediately the training accuracy becomes 98%, and 

average training f2 score grows to 0.92 after 20 epochs.  

This behavior explains that happened with the previous 

loss function. For classification of highly skewed labels, 

SVM with hinge loss seems to be a much better choice 

because it only looks at decision boundary and support 

vector, thus the number of positive examples and negative 

examples used for training is roughly equal. On the other 

hand, sigmoid cross entropy loss might weigh all images 

equally. When the class proportion is skewed, the positive 

examples with low proportion will have almost no effect on 

training. 

 

5.3 Batch normalization 

 Up on deciding to use SVM with hinge loss, I encounter 

another problem – the result of training data differs greatly 

during training and test phase. In training time, I can see 

0.92 training f2 score, but in test time, the f2 score drops to 

0.75 for both training set and validation set. Later I realized 

that batch normalization caused this weird behavior. Since 

batch normalization normalizes the input data differently 

during training and test time, the output of CNN is scaled 

and shifted differently in test time, and this would 

completely change the decision boundary of SVM 

classifier. 

 I solved the mismatch by getting rid of batch 

normalization after affine layer and changing the mode of 

batch normalization after convolution layer to always be 

training. In this way, I can achieve the same training f2 score 

during training and test time, and the corresponding 

validation f2 score is 0.81. 

 

5.4 Initial 6-layer model 

After a working 4-layer model, I added two more 

convolutional layers for image down sampling, hoping to 

achieve a better result and faster training time. The model is 

as follows. 

Conv (3 2*2 filters, stride 2) – ReLu – dropout – batch 

norm 

Conv (3 2*2 filters, stride 2) – ReLu – dropout – batch 

norm – max pooling 

Conv (32 3*3 filters, stride 1) – ReLu – dropout– batch 

norm 

Conv (32 3*3 filters, stride 1) – ReLu – dropout – batch 

norm – max pooling 

 Affine (8192*1024) – ReLu – dropout 

Affine (1024*17) 

 The result of this network is not good. First, the model 

trains slowly. After 40 epochs, the training f2 score stops at 

0.86, which is much lower than the previous model. The 

validation f2 score is 0.81 – the same as the previous 4-layer 

model. 

In summary, this new model trains slowly, has better 

generalization ability, but has not improved validation 

score. The cause of such behavior is that there are too much 

regularization layers – there is no need to put a dropout 

layer after each convolution/affine. Thus, I come up with a 

new 6-layer model with less regularization. 

 

5.5 Fast 6-layer model 

 To increase training speed, I removed 3 dropout layers – 

two layers after the first two convolutional layers and one 

layer after the affine layer. Also, I added more filters since 

the training speed in significantly increase. The new model 

is: 

Conv (16 2*2 filters, stride 2) – ReLu – batch norm 

Conv (26 2*2 filters, stride 2) – ReLu – batch norm – max 

pooling 

Conv (64 3*3 filters, stride 1) – ReLu – dropout– batch 

norm 

Conv (64 3*3 filters, stride 1) – ReLu – dropout – batch 

norm – max pooling 

 Affine (16384*1024) – ReLu 

Affine (1024*17) 

The result of this new mode is much better than the original 

model. In 30 epochs, I can get f2 score of 0.9 on training set 

and 0.846 on test set. 

 

5.6 8-layer model 

 After figuring out a good 6-layer model, I put most effort 

in training models with more layers. Here is the 8-layer 

model.  

Conv (16 2*2 filters, stride 2) – ReLu – batch norm 

Conv (26 2*2 filters, stride 2) – ReLu – batch norm – max 

pooling 

Conv (64 3*3 filters, stride 1) – ReLu – dropout– batch 

norm 

Conv (64 3*3 filters, stride 1) – ReLu – dropout – batch 

norm – max pooling 

Conv (64 3*3 filters, stride 1) – ReLu – dropout– batch 

norm 

Conv (64 3*3 filters, stride 1) – ReLu – dropout – batch 

norm – max pooling 
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Table 1: Parameters for the final 10-layer model. 

Table 2: Result analysis for different results. 

 Affine (4096*1024) – ReLu 

Affine (1024*17) 

With 2 more layers, validation f2 score can be improved 

to 0.866 and the corresponding test score is 0.865. The test 

score would drop to 0.855 if the model is further trained 

with all training data for 10 epochs, which shows the model 

starts overfitting. 

 

5.7 10-layer model 

 2 more layers are added to the model and more filters are 

used. The model is as following. 

Conv (32 3*3 filters, stride 2) – ReLu – batch norm 

Conv (32 3*3 filters, stride 2) – ReLu – batch norm – max 

pooling - dropout 

Conv (64 3*3 filters, stride 1) – ReLu – batch norm 

Conv (64 3*3 filters, stride 1) – ReLu – batch norm – max 

pooling - dropout 

Conv (64 3*3 filters, stride 1) – ReLu – batch norm 

Conv (128 3*3 filters, stride 1) – ReLu – batch norm – 

max pooling - dropout 

Conv (128 3*3 filters, stride 1) – ReLu – batch norm 

Conv (128 3*3 filters, stride 1) – ReLu – batch norm – 

max pooling - dropout 

 Affine (4096*1024) – ReLu 

Affine (1024*17) 

 This is the last CNN I trained. After 30 epochs, the 

training f2 score is 0.89, the validation f2 score is 0.875 and 

the test f2 score is 0.874. 

 

5.8 Existing models 

 Besides custom models I build I have used a VGG model 

by changing the size of output to 17, and tried to replace the 

SoftMax cross entropy loss to either sigmoid cross entropy 

loss or hinge loss. The result is also not good – all images 

are classified as clear and primary no matter how I change 

learning rate, loss function or variable initialization. Given 

that training a VGG net takes a long time, I decided to spend 

more time on building my own deep CNN rather than 

wasting time with the existing model. 

 

5.9 Other feature extraction methods 

 I tried training a traditional model which uses HOG 

features and SVM classifier on a tiny subset of training 

images with 3000 training images and 1000 validation 

images. The f2 score for validation is 0.77. 

The reason for the bad performance of HOG feature is 

that it only contains orientation information. Since many 

labels are related to weather information, and HOG cannot 

capture the related color information, it is not a good model 

for feature extraction in this project. 

 

6. Experiment Results 

6.1 Parameter tuning 

 

Parameters Initial value After tuning 

Dropout keep 

probability 

0.6 0.8 

C for SVM 1 1 

L2 regularization 0.5 0.05 

Training f2 score 0.89 0.895 

Test f2 score 0.874 0.878 

 

The largest problem throughout this project is that CNN 

models are hard to train. As the number of layers increase, 

the generalization ability of the model becomes better, but 

training time also increases. As a result, parameter tuning is 

done to make sure that training error can decrease faster and 

a higher training f2 score can be achieved. 

Table 1 shows the parameters before and after tuning. We 

can see an increase in keep probability and decrease in L2 

regularization. By having less regularization, the model can 

achieve higher training and test f2 score. 

The optimizer I used is Adam with learning rate as 0.001. 

I did not spend much time testing with different optimizers 

because Adam learns very fast – the training f2 score can 

usually reach 0.74 after one epoch. In practice, dropout 

layer and l2 regularization in CNN have much more 

influence on learning speed than the choice of optimizer. 

 

6.2 F2 scores for training, validation, and test sets 

 

Model Training F2 Validation F2 Test F2 

4-layer 0.92 0.81 n/a 

6-layer 

slow 

0.86 0.81 n/a 

6-layer 

fast 

0.9 0.846 n/a 

8-layer 0.895 0.866 0.865 

10-layer 0.89 0.875 0.874 

 

Table 2 shows how training f2 score and test f2 score 

changes with different model depths. The trend is very clear 

– as the number of layers gets larger, the training score tends 

to decrease and validation score tends to increase. This is a 

result of better generalizability and harder trainability. If I 

have time to train on a CNN with more layers and more 

epochs, I believe I can get a model that has test score higher 

than 0.9. 
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Figure 3: Training precision for all labels. 

Figure 5: Training recall for all labels. 

Figure 4: Validation precision for all labels. 

Figure 6: Validation recall for all labels. 

 

6.3 Precision and recall analysis 

 

 

 

 

 
 

 

Figure 3 and 4 shows the training and validation precision 

for all labels using the final 10-layer CNN model. The 

structure of two graphs are very close, indicating that the 

model has good generalization ability. One interesting thing 

to note is that 6 labels has 0 precision. On the other hand, the 

number of labels with 0 precision with the initial 4-layer 

model is 2. We see an increase in the number of imprecise 

labels as the model becomes more complicated. This 

phenomenon has two explanations. One is that those classes 

appear too rare in data so that ignoring them does not have 

much influence on the score. The second explanation is that 

the model is under-trained and requires more training 

epochs. 
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Figure 7: Example misclassified images. For each 

image, top left corner contains the correct labels, and 

top right corner contains the predicted labels. 

Figure 5 and 6 shows the training and validation recall of 

the 10-layer model. Again, the two graphs share similar 

structures. However, for some labels, like cultivation, 

habitation and haze, the recall is very low even though 

precision is high. This suggests the possibility to lower the 

decision boundary, and get a higher recall in exchange of a 

lower precision. Since recall is about 4 times more 

important than precision in the evaluation of f2 score, a 

lower threshold will give us a better overall score. 

 

6.4 Error case analysis 

 

 

Figure 7 contains 4 examples of misclassified images, 

and they represent some of the most common mistakes my 

classifier makes. 

The image on the top left is the misclassification of haze 

and clear. The mistake is caused by a low threshold for clear 

and a high threshold for haze. One solution might be having 

a lower bar for haze and a higher bar for clear, given that 

clear has a recall close to 1 while haze has a recall of only 

0.5. 

The image on the top right has a misclassification of road 

rather than water. In fact, this is a common mistake even for 

human because a road visually looks similar to a river. 

Adding more higher resolution filters on the first layer of 

convolutional network might be able to solve this problem. 

The image on the bottom left corner is missing a 

habitation label. This is a typical problem of the model as it 

has high precision but low recall. One proposal is to have 

different penalty in hinge loss function for positive and 

negative labels, but the result of it would need further 

experiments. 

The image on the bottom right has an additional 

agriculture label. This is in fact the case that CNN is 

inherently bad at – the best neural network still makes 

mistakes. Even though precision and recall for agriculture 

are both high, CNN would still have classification errors. 

 In theory, most the misclassification case above might be 

solved by a recurrent neural network structure given that 

many of the labels are correlated or mutually exclusive. 

Another possible solution is to do preprocessing on the label 

of images, such as PCA, and present them as a lower 

dimension vector for prediction. 

 

6.5 Result and competition standing 

The best test f2 score I achieved is 0.877, and the current 

leading score is 0.933. I believe with deep neural network 

and more training, I would be able to get above 0.9. 

7. Conclusion and future work 

  At the beginning of this project, I spend a large amount of 

time to find correct architecture. As a result, with the limited 

time to test and train models, I was not able to train CNN 

deeper than 10 layers. But after this project, here are a few 

more things I could continue to try. 

7.1. Add model complexity 

For CNNs, it is always good to add more layers to the 

existing model. I can gradually get better results with deeper 

neural network and more training time. 

7.2. Different CNN architecture 

During poster session, I realized that there are other 

groups working on other CNN architectures and achieve a 

score over 0.93. Such structures include CNN-RNN and 

hierarchical CNN. Also, I have not tried using ResNet, 

which is possible to produce a much better result. 

7.3 Modification of loss function 

 Since precision is less important than recall, the hinge 

loss function of SVM may not be the best loss function to 

use. A modified hinge loss could be used so that 

misclassification of positive labels and negative labels are 

penalized differently. 

7.4 Different CNN for different labels 

 Since a single CNN always return 0 for some labels, it is 

possible to train several simpler models for some labels on 

top of the complex model. In this way, the training and test 

accuracy may be able to increase more without the 

interference of other labels. 

7.5 Recruit other team members 

Training a deep neural network is a hard task for one 

individual. If I had more teammates testing different models 

at the same time, I would be able to spend less time on the 

wrong architecture and achieve a better score. 
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8. Appendix 

The base code for this project is based on assignment2 – 

Tensorflow.ipynb (with bugs fixed) and Piazza post – 

Tutorial for data loading and fine-tuning. 
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