

1

Abstract

This project explored different convolutional neural

network (CNN) architectures for the multilabel

classification challenge of Amazon rainforest satellite

images. In this project, I examined how different layers and

hyperparameters change the performance of neural

network, including training time, training f2 score and test

f2 score. The best model I have found is a 10-layer

convolutional neural network, which has 0.89 training f2

score and 0.88 test f2 score.

1. Introduction

Every minute, the world loses an area of forest the size of

48 football field, most of which are caused by deforestation

in Amazon Basin. Thus, to help governments and local

stakeholders understand the location of deforestation and

human encroachment on forests, Planet, the designer, and

builder of world’s largest constellation of Earth-imaging

satellites, has launched a Kaggle competition – Planet:

Understanding Amazon from Space – to analyze

small-scale deforestation and human activity influences

from Amazon satellite images. The goal of this challenge is

to correctly label images with atmospheric conditions,

common land cover/land use phenomena, and rare land

cover/land use phenomena.

For this project, the input is 256*256 color satellite

images, and the algorithm uses a convolutional network to

output a set of predicted labels. Training data and test data

in the challenge is provided by Kaggle. In this project, I will

explore and analyze how different convolutional neural

network models perform in terms of training time, f2 score

and generalization ability.

2. Related work

Research on satellite image processing has over 20 years’

history. Simple neural network structure with only fully

connected layers has been used as a satellite image classifier

early in 1995[1]. In recent years, especially since 2015,

training a deep neural network becomes easier with larger

computational power, bigger training datasets and better

image quality. Thus, convolutional neural network has

become a popular tool for satellite image analysis in many

areas of application, including image classification [2], land

use classification [3], pattern detection in urban

environment [4], solar power plant detection [5],

orthoimagery segmentation [6], nighttime sky/cloud

segmentation [7] and face-like structure detection [8].

Also, with the emergence of large dataset with

high-resolution remote sensing (HRRS) imagery, different

neural network models have been created and tuned for

higher accuracy. Examples models such as traditional

neural network [9], deep convolutional neural network [10],

multi-channel pulse coupled neural network (m-PCNN) [5]

and recurrent neural network [11], have all been used to

achieve a high accuracy on high-resolution satellite images.

In addition, methods other than neural networks are still

being used for specific tasks. Statistical methods like

contrast statistical analysis (CSA) [12], singular value

decomposition (SVD) [13], temporally contiguous robust

matrix completion (TECROMAC) [14] and non-additive

entropy [15] has been used for quality evaluation, image

de-noising, matrix completion, image classification and

segmentation.

For this project, I will mainly evaluate the performance of

deep convolutional neural networks on high-resolution

Amazon satellite images.

3. Problem Statement and Challenges

The Kaggle challenge is a multilabel classification

problem. The input is colored satellite images with 256*256

resolution. The output can be one or multiple labels from 17

possible classes – agriculture, artisinal_mine, bare_ground,

blooming, blow_down, clear, cloudy, conventional_mine,

cultivation, habitation, haze, partly_cloudy, primary, road,

selective_logging, slash_burn, and water. Figure 1 has some

sample images with corresponding labels.

The evaluation metric used for this competition is the

average f2 score, which basically takes a weighted

geometric average between precision and recall. In the case

of f2 score, recall has a much higher importance than

precision. In other words, false negatives are more

Amazon Rainforest Satellite Image Labelling Challenge

Yixin Cai

Stanford University
yixincai@stanford.edu

2

Figure 2: Class label distribution of training data.

detrimental to the score than false positives – it is worse to

miss a label than to add an incorrect label to images. In later

sections, we will explore how hyperparameters and decision

boundaries can be adjusted accordingly to achieve a higher

f2 score.

Another challenge is that there could be noise in the

labels for the training data. Since the training images are

labeled manually, the labels are not guaranteed to be 100

percent correct, and the challenger needs to be aware of

possible wrong labels in training process. I have not

examined incorrect labels in this project, but there are many

existing statistical methods, such as principal component

analysis (PCA), that can be used for image preprocessing to

reduce the noise and further improve correctness.

4. Data

There are 40479 training images and 61191 test images.

Each image is a 3-channel color image with 256*256 pixels.

For training, I used 30000 (75%) images as training set and

10479 (25%) images as validation set. Test set is composed

of all test images. Since Kaggle provided an easy interface

to check the test performance of 66% (40386) test images, I

moved all training images that used to be in test set into

validation set, so that all training images are used for

training and validation.

One thing to note about the data set is that most labels are

highly skewed. As shown in Figure 2, most labels are only

assigned to less than 20% of training data. In particular,

labels like artisinal_mine, blooming, blow_down,

conventional_mine, selective_logging and slash_burn, have

proportion less than 1% of all data. On one side, correct

classification of these labels becomes a particularly hard

and challenging part of the competition. On the other hand,

misclassification of these labels will have a very small effect

on average score.

5. Methods

5.1 Initial 4-layer CNN

 The first model I tried for this project is the CNN model I

used in assignment 2, which is a 4-layer model. The

structure is as follows.

 Conv (32 3*3 filters, stride 2) – batch norm – ReLu –

dropout – max pooling

Conv (32 3*3 filters, stride 1) – batch norm – ReLu –

dropout – max pooling

 Affine (32768*1024) – batch norm – ReLu

Affine (1024*17)

 The loss function is changed from SoftMax cross entropy

to sigmoid cross entropy. The initial accuracy is 89%, which

seems reasonable, but the training f2 score is very low –

only 0.59. Upon further inspection, I realized that the cause

is incorrect choice of loss function.

Figure 1: Sample training images with labels.

3

5.2 Classification method and loss function

There are two common loss functions for multilabel

classification – sigmoid cross entropy loss and support

vector machine (SVM) with hinge loss.

As I mentioned, I started with binary classification and

sigmoid cross entropy loss, but the result is not very good.

Upon looking at the prediction labels, I realized that the

classifier tends to classify all images as clear and primary,

which are the two most dominant class labels in training

data. It seems like all images are classified in the same way

– they only have labels that appear in more than 50%

training images. This is not ideal.

As a result, I changed the last layer to SVM and hinge

loss, but keeping the other CNN structure the same.

Immediately the training accuracy becomes 98%, and

average training f2 score grows to 0.92 after 20 epochs.

This behavior explains that happened with the previous

loss function. For classification of highly skewed labels,

SVM with hinge loss seems to be a much better choice

because it only looks at decision boundary and support

vector, thus the number of positive examples and negative

examples used for training is roughly equal. On the other

hand, sigmoid cross entropy loss might weigh all images

equally. When the class proportion is skewed, the positive

examples with low proportion will have almost no effect on

training.

5.3 Batch normalization

 Up on deciding to use SVM with hinge loss, I encounter

another problem – the result of training data differs greatly

during training and test phase. In training time, I can see

0.92 training f2 score, but in test time, the f2 score drops to

0.75 for both training set and validation set. Later I realized

that batch normalization caused this weird behavior. Since

batch normalization normalizes the input data differently

during training and test time, the output of CNN is scaled

and shifted differently in test time, and this would

completely change the decision boundary of SVM

classifier.

 I solved the mismatch by getting rid of batch

normalization after affine layer and changing the mode of

batch normalization after convolution layer to always be

training. In this way, I can achieve the same training f2 score

during training and test time, and the corresponding

validation f2 score is 0.81.

5.4 Initial 6-layer model

After a working 4-layer model, I added two more

convolutional layers for image down sampling, hoping to

achieve a better result and faster training time. The model is

as follows.

Conv (3 2*2 filters, stride 2) – ReLu – dropout – batch

norm

Conv (3 2*2 filters, stride 2) – ReLu – dropout – batch

norm – max pooling

Conv (32 3*3 filters, stride 1) – ReLu – dropout– batch

norm

Conv (32 3*3 filters, stride 1) – ReLu – dropout – batch

norm – max pooling

 Affine (8192*1024) – ReLu – dropout

Affine (1024*17)

 The result of this network is not good. First, the model

trains slowly. After 40 epochs, the training f2 score stops at

0.86, which is much lower than the previous model. The

validation f2 score is 0.81 – the same as the previous 4-layer

model.

In summary, this new model trains slowly, has better

generalization ability, but has not improved validation

score. The cause of such behavior is that there are too much

regularization layers – there is no need to put a dropout

layer after each convolution/affine. Thus, I come up with a

new 6-layer model with less regularization.

5.5 Fast 6-layer model

 To increase training speed, I removed 3 dropout layers –

two layers after the first two convolutional layers and one

layer after the affine layer. Also, I added more filters since

the training speed in significantly increase. The new model

is:

Conv (16 2*2 filters, stride 2) – ReLu – batch norm

Conv (26 2*2 filters, stride 2) – ReLu – batch norm – max

pooling

Conv (64 3*3 filters, stride 1) – ReLu – dropout– batch

norm

Conv (64 3*3 filters, stride 1) – ReLu – dropout – batch

norm – max pooling

 Affine (16384*1024) – ReLu

Affine (1024*17)

The result of this new mode is much better than the original

model. In 30 epochs, I can get f2 score of 0.9 on training set

and 0.846 on test set.

5.6 8-layer model

 After figuring out a good 6-layer model, I put most effort

in training models with more layers. Here is the 8-layer

model.

Conv (16 2*2 filters, stride 2) – ReLu – batch norm

Conv (26 2*2 filters, stride 2) – ReLu – batch norm – max

pooling

Conv (64 3*3 filters, stride 1) – ReLu – dropout– batch

norm

Conv (64 3*3 filters, stride 1) – ReLu – dropout – batch

norm – max pooling

Conv (64 3*3 filters, stride 1) – ReLu – dropout– batch

norm

Conv (64 3*3 filters, stride 1) – ReLu – dropout – batch

norm – max pooling

4

Table 1: Parameters for the final 10-layer model.

Table 2: Result analysis for different results.

 Affine (4096*1024) – ReLu

Affine (1024*17)

With 2 more layers, validation f2 score can be improved

to 0.866 and the corresponding test score is 0.865. The test

score would drop to 0.855 if the model is further trained

with all training data for 10 epochs, which shows the model

starts overfitting.

5.7 10-layer model

 2 more layers are added to the model and more filters are

used. The model is as following.

Conv (32 3*3 filters, stride 2) – ReLu – batch norm

Conv (32 3*3 filters, stride 2) – ReLu – batch norm – max

pooling - dropout

Conv (64 3*3 filters, stride 1) – ReLu – batch norm

Conv (64 3*3 filters, stride 1) – ReLu – batch norm – max

pooling - dropout

Conv (64 3*3 filters, stride 1) – ReLu – batch norm

Conv (128 3*3 filters, stride 1) – ReLu – batch norm –

max pooling - dropout

Conv (128 3*3 filters, stride 1) – ReLu – batch norm

Conv (128 3*3 filters, stride 1) – ReLu – batch norm –

max pooling - dropout

 Affine (4096*1024) – ReLu

Affine (1024*17)

 This is the last CNN I trained. After 30 epochs, the

training f2 score is 0.89, the validation f2 score is 0.875 and

the test f2 score is 0.874.

5.8 Existing models

 Besides custom models I build I have used a VGG model

by changing the size of output to 17, and tried to replace the

SoftMax cross entropy loss to either sigmoid cross entropy

loss or hinge loss. The result is also not good – all images

are classified as clear and primary no matter how I change

learning rate, loss function or variable initialization. Given

that training a VGG net takes a long time, I decided to spend

more time on building my own deep CNN rather than

wasting time with the existing model.

5.9 Other feature extraction methods

 I tried training a traditional model which uses HOG

features and SVM classifier on a tiny subset of training

images with 3000 training images and 1000 validation

images. The f2 score for validation is 0.77.

The reason for the bad performance of HOG feature is

that it only contains orientation information. Since many

labels are related to weather information, and HOG cannot

capture the related color information, it is not a good model

for feature extraction in this project.

6. Experiment Results

6.1 Parameter tuning

Parameters Initial value After tuning

Dropout keep

probability

0.6 0.8

C for SVM 1 1

L2 regularization 0.5 0.05

Training f2 score 0.89 0.895

Test f2 score 0.874 0.878

The largest problem throughout this project is that CNN

models are hard to train. As the number of layers increase,

the generalization ability of the model becomes better, but

training time also increases. As a result, parameter tuning is

done to make sure that training error can decrease faster and

a higher training f2 score can be achieved.

Table 1 shows the parameters before and after tuning. We

can see an increase in keep probability and decrease in L2

regularization. By having less regularization, the model can

achieve higher training and test f2 score.

The optimizer I used is Adam with learning rate as 0.001.

I did not spend much time testing with different optimizers

because Adam learns very fast – the training f2 score can

usually reach 0.74 after one epoch. In practice, dropout

layer and l2 regularization in CNN have much more

influence on learning speed than the choice of optimizer.

6.2 F2 scores for training, validation, and test sets

Model Training F2 Validation F2 Test F2

4-layer 0.92 0.81 n/a

6-layer

slow

0.86 0.81 n/a

6-layer

fast

0.9 0.846 n/a

8-layer 0.895 0.866 0.865

10-layer 0.89 0.875 0.874

Table 2 shows how training f2 score and test f2 score

changes with different model depths. The trend is very clear

– as the number of layers gets larger, the training score tends

to decrease and validation score tends to increase. This is a

result of better generalizability and harder trainability. If I

have time to train on a CNN with more layers and more

epochs, I believe I can get a model that has test score higher

than 0.9.

5

Figure 3: Training precision for all labels.

Figure 5: Training recall for all labels.

Figure 4: Validation precision for all labels.

Figure 6: Validation recall for all labels.

6.3 Precision and recall analysis

Figure 3 and 4 shows the training and validation precision

for all labels using the final 10-layer CNN model. The

structure of two graphs are very close, indicating that the

model has good generalization ability. One interesting thing

to note is that 6 labels has 0 precision. On the other hand, the

number of labels with 0 precision with the initial 4-layer

model is 2. We see an increase in the number of imprecise

labels as the model becomes more complicated. This

phenomenon has two explanations. One is that those classes

appear too rare in data so that ignoring them does not have

much influence on the score. The second explanation is that

the model is under-trained and requires more training

epochs.

6

Figure 7: Example misclassified images. For each

image, top left corner contains the correct labels, and

top right corner contains the predicted labels.

Figure 5 and 6 shows the training and validation recall of

the 10-layer model. Again, the two graphs share similar

structures. However, for some labels, like cultivation,

habitation and haze, the recall is very low even though

precision is high. This suggests the possibility to lower the

decision boundary, and get a higher recall in exchange of a

lower precision. Since recall is about 4 times more

important than precision in the evaluation of f2 score, a

lower threshold will give us a better overall score.

6.4 Error case analysis

Figure 7 contains 4 examples of misclassified images,

and they represent some of the most common mistakes my

classifier makes.

The image on the top left is the misclassification of haze

and clear. The mistake is caused by a low threshold for clear

and a high threshold for haze. One solution might be having

a lower bar for haze and a higher bar for clear, given that

clear has a recall close to 1 while haze has a recall of only

0.5.

The image on the top right has a misclassification of road

rather than water. In fact, this is a common mistake even for

human because a road visually looks similar to a river.

Adding more higher resolution filters on the first layer of

convolutional network might be able to solve this problem.

The image on the bottom left corner is missing a

habitation label. This is a typical problem of the model as it

has high precision but low recall. One proposal is to have

different penalty in hinge loss function for positive and

negative labels, but the result of it would need further

experiments.

The image on the bottom right has an additional

agriculture label. This is in fact the case that CNN is

inherently bad at – the best neural network still makes

mistakes. Even though precision and recall for agriculture

are both high, CNN would still have classification errors.

 In theory, most the misclassification case above might be

solved by a recurrent neural network structure given that

many of the labels are correlated or mutually exclusive.

Another possible solution is to do preprocessing on the label

of images, such as PCA, and present them as a lower

dimension vector for prediction.

6.5 Result and competition standing

The best test f2 score I achieved is 0.877, and the current

leading score is 0.933. I believe with deep neural network

and more training, I would be able to get above 0.9.

7. Conclusion and future work

 At the beginning of this project, I spend a large amount of

time to find correct architecture. As a result, with the limited

time to test and train models, I was not able to train CNN

deeper than 10 layers. But after this project, here are a few

more things I could continue to try.

7.1. Add model complexity

For CNNs, it is always good to add more layers to the

existing model. I can gradually get better results with deeper

neural network and more training time.

7.2. Different CNN architecture

During poster session, I realized that there are other

groups working on other CNN architectures and achieve a

score over 0.93. Such structures include CNN-RNN and

hierarchical CNN. Also, I have not tried using ResNet,

which is possible to produce a much better result.

7.3 Modification of loss function

 Since precision is less important than recall, the hinge

loss function of SVM may not be the best loss function to

use. A modified hinge loss could be used so that

misclassification of positive labels and negative labels are

penalized differently.

7.4 Different CNN for different labels

 Since a single CNN always return 0 for some labels, it is

possible to train several simpler models for some labels on

top of the complex model. In this way, the training and test

accuracy may be able to increase more without the

interference of other labels.

7.5 Recruit other team members

Training a deep neural network is a hard task for one

individual. If I had more teammates testing different models

at the same time, I would be able to spend less time on the

wrong architecture and achieve a better score.

haze

primary

agriculture

clear

habitation

primary

road

agriculture

haze

primary

water

haze

primary

water

agriculture

clear

primary

water

agriculture

clear

primary

road

clear

primary

agriculture

clear

primary

road

7

8. Appendix

The base code for this project is based on assignment2 –

Tensorflow.ipynb (with bugs fixed) and Piazza post –

Tutorial for data loading and fine-tuning.

References

[1] M. F. Augusteijn, L. E. Clemens and K. A. Shaw,

"Performance evaluation of texture measures for ground

cover identification in satellite images by means of a neural

network classifier," in IEEE Transactions on Geoscience and

Remote Sensing, vol. 33, no. 3, pp. 616-626, May 1995. doi:

10.1109/36.387577.

[2] Qingshan Liu, Renlong Hang, Huihui Song: “Learning

Multi-Scale Deep Features for High-Resolution Satellite

Image Classification”, 2016.

[3] Marco Castelluccio, Giovanni Poggi, Carlo Sansone, and

Luisa Verdoliva. 2015. Land Use Classification in Remote

Sensing Images by Convolutional Neural Networks. CoRR

abs/1508.00092 (2015). http://arxiv.org/abs/1508.00092.

[4] Adrian Albert, Jasleen Kaur: “Using convolutional networks

and satellite imagery to identify patterns in urban

environments at a large scale”, 2017; arXiv:1704.02965.

[5] Nevrez Imamoglu, Motoki Kimura, Hiroki Miyamoto, Aito

Fujita: “Solar Power Plant Detection on Multi-Spectral

Satellite Imagery using Convolutional Neural Networks with

Feedback Model and m-PCNN Fusion”, 2017.

http://arxiv.org/abs/1704.06410 arXiv:1704.06410.

[6] Langkvist, M.; Kiselev, A.; Alirezaie, M.; Loutfi, A.

Classification and Segmentation of Satellite Orthoimagery

Using Convolutional Neural Networks. Remote Sens. 2016,

8, 329.

[7] Soumyabrata Dev, Florian M. Savoy, Yee Hui Lee:

“Nighttime sky/cloud image segmentation”, 2017.

http://arxiv.org/abs/1705.10583 arXiv:1705.10583.

[8] Kazutaka Kurihara, Masakazu Takasu, Kazuhiro Sasao, Hal

Seki, Takayuki Narabu, Mitsuo Yamamoto, Satoshi Iida: “A

Face-like Structure Detection on Planet and Satellite

Surfaces using Image Processing”, 2013, ACE 2013, LNCS

8253, Springer, pp. 564-567, 2013.

[9] Mnih V., Hinton G.E. (2010) Learning to Detect Roads in

High-Resolution Aerial Images. In: Daniilidis K., Maragos

P., Paragios N. (eds) Computer Vision – ECCV 2010. ECCV

2010. Lecture Notes in Computer Science, vol 6316.

Springer, Berlin, Heidelberg.

[10] Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep

Convolutional Neural Networks for the Scene Classification

of High-Resolution Remote Sensing Imagery. Remote Sens.

2015, 7, 14680-14707.

[11] Emmanuel Maggiori, Guillaume Charpiat, Yuliya Tarabalka:

“Recurrent Neural Networks to Correct Satellite Image

Classification Maps”, 2016; arXiv:1608.03440. DOI:

10.1109/TGRS.2017.2697453.

[12] Firouz Abdullah Al-Wassai, N. V. Kalyankar: “Spatial And

Spectral Quality Evaluation Based On Edges Regions Of

Satellite Image Fusion”, 2012, International Journal of Latest

Technology in Engineering,Management & Applied Science

(IJLTEMAS),Vol. I, Issue V, 2012, 124-138;

[http://arxiv.org/abs/1207.1922 arXiv:1207.1922].

[13] Jialei Wang, Peder A. Olsen, Andrew R. Conn: “Removing

Clouds and Recovering Ground Observations in Satellite

Image Sequences via Temporally Contiguous Robust Matrix

Completion”, 2016; [http://arxiv.org/abs/1604.03915

arXiv:1604.03915].

[14] Prajakta P. Khairnar: “Image Resolution and Contrast

Enhancement of Satellite Geographical Images with

Removal of Noise using Wavelet Transforms”, 2014,

International Journal of Engineering Trends and Technology

(IJETT),Volume 10, Number 12,Apr-2014 International

Conference of Recent Trends in Engineering and

Technology (ICRTET-2014),paper code 223;

[http://arxiv.org/abs/1405.1967 arXiv:1405.1967].

[15] Lucas Assirati, Alexandre Souto Martinez: “Satellite image

classification and segmentation using non-additive entropy”,

2014; [http://arxiv.org/abs/1401.2416 arXiv:1401.2416].

DOI: [http://dx.doi.org/10.1088/1742-6596/490/1/012086

10.1088/1742-6596/490/1/012086].

http://arxiv.org/abs/1508.00092

