
Exploring CNN-RNN Architectures for Multilabel Classification of the Amazon

Cristian Zanoci
Stanford University

czanoci@stanford.edu

Jim Andress
Stanford University

jandress@stanford.edu

Abstract

Despite the fact that most of the research into classifi-
cation via deep learning has focused on single-label clas-
sification tasks, there are many important problems which
require a set of labels to be output for each example. In
this paper, we explore one such scenario, in which satel-
lite images of the Amazon rainforest need to be tagged with
labels describing the land use and atmospheric conditions.
We focus on architectures which take a two-stage approach.
First, we adapt a Convolutional Neural Network (CNN) ar-
chitecture to encode the input image into a high-level repre-
sentation. Then, a Recurrent Neural Network (RNN) de-
coder produces a sequence of labels from this represen-
tation. Overall, we find that the CNN-RNN architectures
perform well at this multi-label classification technique, al-
though slightly worse than pre-trained CNN models on their
own.

1. Introduction
Deforestation of the Amazon rainforest accelerated sig-

nificantly over the past 20 years. Today, the Amazon rain-
forest covers only 80% of area it used to cover in 1970,
and the annual forest loss is around 6, 000 km2. This de-
forestation results in reduced biodiversity, habitat loss, and
climate change. The main causes of deforestation are cattle
pasture, excessive and unsustainable farming, and natural
disasters, such as forest fires. Luckily, with the recent in-
crease in available satellite images of the Amazon Basin,
we have more available data to study the extent of and pos-
sible solutions to deforestation in the Amazon.

Recently, Planet has uploaded to Kaggle a dataset [17]
of satellite images of the Amazon Basin and challenged its
members to help classify different patches of the images ac-
cording to their atmospheric conditions and type of terrain.
As a result of labeling these different parts of the Amazon,
we can gain a better understanding of where and why the ef-
fects of deforestation are especially severe. By automating
the process of identifying damaged areas of the rainforest,
we help local authorities to respond faster and more effi-

ciently to these problems.
This task is interesting from both a technical and a so-

cietal perspective. First, it provides an interesting twist on
the standard image recognition task, as the labels are not
mutually exclusive. More importantly, though, success on
the task has important implications for sustainability efforts
taking place in South America.

In this paper, we first describe a modification to existing
CNN models which adapts them for the multi-label classi-
fication task. Over the past few years, CNNs have proven
to be very successful at image classification and recogni-
tion tasks when trained on large-scale datasets, such as Im-
ageNet. However, the relatively small size of our dataset,
as well as its non-uniform distribution of labels, makes it
difficult to fully train a modern deep neural network, such
as ResNet [6] or DenseNet [8]. To overcome this challenge,
we use a combination of transfer learning and data augmen-
tation techniques to fine-tune a pre-trained CNN. Next, we
propose three architectures that combine CNNs and RNNs
to predict the set of labels associated with each satellite im-
age. By incorporating RNNs into the model, we hope to
capture the inter-dependencies between labels.

2. Background

2.1. Remote Sensing

Interpretation of satellite images has a wide variety
of applications, from urban planning to modeling climate
change. Since these images became available in the 1950s
and 60s, the majority of the early work on labeling and clas-
sifying them was performed by human experts. However,
this process is very tedious and often impractical.

The first attempts to automate this process using neural
network models date back to 1989 at the latest [3]. More
recently, the increase in the quantity and quality of satel-
lite images has allowed for the application of large-scale
machine learning algorithms, which resulted in automated
classifiers and detectors with a remarkable degree of accu-
racy. For instance, Mnih and Hinton successfully applied
Restricted Boltzmann Machines to the problem of detect-
ing patterns, such as roads, in satellite images [12, 13].

1



Similarly, Basu et al. [1] introduced a framework that ex-
tracts statistical features from satellite images and feeds
them into a Deep Belief Network with Restricted Boltz-
mann Machines for classification. Although this approach
was very successful on the SAT-4 and SAT-6 datasets, it
relies on carefully selected features and a large corpus of
training images. Our dataset, however, is much smaller and
has high inter-class variability, which make the approaches
described above less suitable for our project.

Penatti et al. [15] showed that CNNs generalize well
to remote sensing images, even though they were trained
on a considerably different dataset. Moreover, they show
that CNN architectures outperform a wide range of other
visual descriptors tuned specifically to recognizing patterns
in aerial and satellite images.

Training a neural network from scratch is preferable
since it learns to extract specific visual features for the tar-
get dataset. This strategy also gives full control over the
network architecture and parameters, which often results in
a more robust design. However, this approach requires a
significant amount of data in order to be effective and avoid
over-fitting. As an alternative, one can use networks that
were pre-trained on large datasets, such as ImageNet, and
fine-tune their parameters using the dataset of interest. The
assumption here is that the first layers in a CNN encode
generic image features that are relevant to all datasets, while
the later stages are application-specific and can be adjusted
using our data. Recently, Nogueira et al. [14] performed a
comparative study of modern deep neural net architectures
which showed that fine-tuned CNNs perform better than
fully-trained CNNs when applied to three satellite image
datasets. Similarly, Xie et al. [22] showed that a fine-tuned
VGG network can successfully learn high-level feature rep-
resentations of satellite images and predict poverty regions
on the map.

Given the success of these approaches, several methods
have been proposed to improve the performance of stan-
dalone fine-tuned CNN architectures. In [19], the authors
introduced a method combining Principal Component Anal-
ysis (PCA) and CNNs. The PCA layer before the CNN is
meant to synthesize spatial information of remote sensing
images in each spectral channel. This design reduces the
differences in scale and color between the target images and
the images in the original dataset used for pre-training the
CNN.

2.2. Multi-Label Classification

Although classification is the quintessential machine
learning problem, the majority of research into classifi-
cation algorithms has focused on scenarios in which the
classes are mutually exclusive. However, in many impor-
tant tasks this restriction does not hold, meaning that data
points lie in several classes simultaneously. In the decade

or so that this problem has been studied, models have been
proposed based on both classic machine learning techniques
and deep learning.

Amongst the non-neural techniques, Boutell et al. inves-
tigate various training and scoring paradigms for multi-label
classification in general [2]. For image labelling in partic-
ular, a common non-neural technique is a nearest neigh-
bor based approach computed using one of several dis-
tance metrics on various statistical features of the images
[5, 10]. Although these techniques did achieve some suc-
cess in some limited situations, their results no longer hold
up against deep learning-based approaches.

One of the earliest applications of deep learning to multi-
label classification was the work done by Zhang et al.,
which applied a simple feed forward network to the func-
tional genomics problem in computational biology [23]. In
2013, Gong et al. [4] explored how the application of var-
ious multi-label classification loss functions influenced the
training of an AlexNet-like CNN architecture [9]. While
these results were promising, in our case the techniques ex-
plored are less feasible since they train the network from
scratch.

Even more recently, Wei et al. put forth a model which
combines the labels from a series of proposal regions, each
of which is classified using a single-label classification net-
work [21]. By using single-label classification as a sub-
component, Wei’s architecture is capable of leveraging the
latest advances in CNN models. However, because it in-
volves predicting a label for each of the proposal regions,
this method tends to be significantly slower than techniques
which predict a set of labels all at once.

Finally, last year Wang et al. produced a paper doc-
umenting their efforts to use RNNs in conjunction with
CNNs for multi-label classification [20]. Wang’s team
hoped that by using an RNN to explicitly model conditional
dependencies between the labels, their model would be able
to exploit the full image context better than previous tech-
niques.

3. Dataset
Our data comes from the Kaggle competition “Planet:

Understanding the Amazon from Space.” The competi-
tion provides 40,479 training images and 61,192 testing
images, each of which is 256 × 256 pixels stored in
JPEG format. These images have relatively high spatial
resolution: each pixel represents a 3m × 3m land area.
The images are each tagged with some subset of the fol-
lowing labels: 4 atmospheric condition labels (“clear,”
“partly cloudy,” “haze,” “cloudy”) and 13 land condition
labels (“primary,” “agriculture,” “road,” “water,” “culti-
vation,” “habitation,” “bare ground,” “selective logging,”
“artisinal mine,” “blooming,” “slash burn,” “blow down,”
“conventional mine”). Several examples of the images are

2



Figure 1: Several example images taken from the dataset.

Figure 2: The number of training images with each of the
17 different labels.

shown in Figure 1.
The distribution of labels in the training data is shown in

Figure 2. As can be seen, the distribution is highly skewed,
ranging from 92.7% of the images having the “primary”
label to only 0.25% of the images having the “conven-
tional mine” label. In an attempt to compensate for the data
skew, we augmented the dataset by including many rotated
and flipped copies of images with rare labels. We made
sure to have at least 1000 example for each label in our aug-
mented dataset. However, this approach did not work as
we had hoped. Figure 3 displays the co-occurrence matrix,
which indicates what percentage of images with the label
on the X-axis also have the label on the Y-axis. Notice that
the label “primary” is present with almost all the other la-
bels, while the label “cloudy” very rarely co-occurs with
any other label. As evidenced by this data, we found that
the images with very rare labels almost always have several
extremely common labels as well, meaning that data aug-
mentation did not help much in evening the label distribu-
tion. It also did not impact the final scores in any significant
way and only added to training times. Therefore our exper-
iments did not use this type of data augmentation.

Nonetheless, we still performed random transformations
on our data. Whenever we drew an image from our dataset,
we randomly applied transpositions, horizontal and vertical
flips, and affine transformations with a small rotation angle
and translation to it. Then we randomly cropped the im-
age to 224 × 224 pixels to adjust its size to the dimension
of the first layer of our CNN. These transformations made
our models more robust and prevented overfitting by intro-
ducing slight variations in the training data at each epoch.

It is worth mentioning that the Kaggle competition also
includes TIFF versions of the dataset in which each image

Figure 3: The co-occurrence matrix for the 17 labels (prob-
ability of Y given X).

includes a fourth, near-infrared (NIR) channel. Unfortu-
nately, based on our own exploration and results from other
Kagglers, we chose to only work with the JPEG data. Al-
though in theory the JPEGs and TIFFs should cover the
same area, it turns out this is not the case. Many of the TIFF
images are shifted, and the labels seem to have been pro-
duced by looking at the JPEGs. This discrepancy means that
many of the TIFF images disagree with their gold-standard
labels, making training on this data difficult or even impos-
sible. This unforeseen feature of the dataset is quite disap-
pointing, as we had initially hoped to use the NIR channel to
generate useful features such as the Normalized Vegetation
and Water Indices [16, 11].

4. Methods
4.1. Transfer Learning

Our first approach was to train a Convolutional Neural
Network on our data. This choice is justified by the great
performance of CNNs on computer vision tasks, which is
due to the ability of the convolutional layers to extract spa-
tial and translation invariant features from images. As our
main architecture, we use a residual network (ResNet) in-
troduced by He at al. [6]. The original model has 152 lay-
ers and relies on a residual learning layers which are easier
to train and optimize than conventional feed-forward layers.
The residual learning framework also addresses the degra-
dation of training accuracy due to the increase in complexity
of the optimization problem that is usually associated with
deep networks [6]. ResNet has proven to be very successful
by winning the 1st place in all five tracks of the ILSVRC
and COCO 2015 competitions, including the image classi-
fication and detection challenge. Thus, ResNet is a natural
choice for our project.

Although the original architecture consisted of 152 lay-
ers, smaller versions of the same network (with fewer re-
peating blocks) with 18, 34, 50, and 101 layers are also
available. As our first network, we chose ResNet-50 be-

3



cause it has significantly fewer parameters than the full 152-
layer network, thus making it easier to train on our small
dataset while still achieving a good accuracy. We use the
PyTorch implementation of ResNet 1 and substitute its last
fully connected layer with one of size 17 to accommodate
for the number of classes in our problem. For our loss func-
tion we use the multilabel soft-margin loss given by

L(s, y) = − 1

N

N∑
i=1

[
yi · log

(
esi

1 + esi

)
+(1− yi) · log

(
1

1 + esi

)]
, (1)

where si is the score for label i as given by the fully con-
nected layer, yi indicates whether label i is indeed asso-
ciated with this image, and N is the number of classes
(N = 17 for our problem). When predicting the labels for
an image, we take the scores s from the fully connected
layer and map them to the range [0, 1] via a sigmoid func-
tion. Then we use a set of per-label thresholds to determine
whether a label should be associated with this image. A de-
tailed description of how we determine these thresholds is
presented in Section 5.

Unfortunately, as we will show in our experiments sec-
tion, the model trained exclusively on our dataset under-
performs when compared to the other entries on the Kag-
gle leader board. We believe this is because the size of
our dataset, even after augmentation, does not allow the
weights to converge to their optimal values when training
from scratch.

Therefore, to address this problem, we use CNN mod-
els that were previously trained on the ImageNet dataset.
The idea is to leverage the low-level image features, such as
edges and shapes, that the CNN has learned from the large
ImageNet corpus and use them as a starting point for our
model. Just as in the case of the CNN trained from scratch,
we begin by substituting the final fully connected layer with
one that has the correct output dimension for our problem.
Since this layer is new, while the rest of the network is pre-
trained, we only train the fully connected layer for a few
(typically 5) epochs until we see the loss plateau. At this
point, the final layer is in sync with the rest of the pre-
trained network and we can start training it as a whole. We
use a smaller learning rate over a larger number of epochs
to fine tune the parameters of both the CNN and the fully
connected layer.

For performance comparison, we also study a different
deep CNN architecture, namely DenseNet [8]. Proposed in
late 2016, this model has 169 layers and represents one of
the newest trends in building CNNs. As opposed to its pre-
decessors, in which each layer is connected to its two im-
mediate neighbors, DenseNet takes the output of each layer

1http://pytorch.org/docs/torchvision/models.html

and feeds it into each of the subsequent ones. This design
reduces the vanishing-gradient problem, strengthens feature
propagation, and encourages feature reuse at later stages
[8]. DenseNet achieves comparable and even slightly better
results than ResNet on both the ImageNet benchmark and
our Amazon dataset. However, since DenseNet has about
three times fewer parameters than ResNet, we prefer to use
it as the backbone of our RNN-CNN architectures below to
allow for faster training.

4.2. RNN-based Approaches

After having attempted a pure transfer-learning ap-
proach, we next sought to better model the inter-
connections between various labels. As demonstrated by
Figure 3, there are strong conditional dependencies between
the labels, and we were concerned that the transfer learning
approach treated each class too independently. To address
this shortcoming, we began to consider the transfer learning
CNN as only the encoding phase in a larger architecture.
For the decoders, we turned to RNNs, both for their ability
to predict variable length sequences of labels as well as their
explicit modeling of conditional relationships between pre-
dictions at different time-steps2. The three RNN decoding
architectures we explored are shown in Figure 4.

4.3. Label-Only RNN Model

This model draws its inspiration from Wang et al.’s
CNN-RNN model [20]. In this model, the CNN and RNN
components are completely independent. The CNN is used
to produce a high-level representation of the image, and the
RNN is used solely to model conditional dependencies be-
tween the various labels.

We start by representing each of the labels as a one-hot
vector ek, which is all zeros except for a single 1 in the
kth spot. We can then obtain a distributed representation
wk of the label by multiplying the one-hot vector by the
embedding matrix U`:

wk = U`ek (2)

For our RNN, we used Long-Short Term Memory (LSTM)
cells, which have been shown to avoid some of the vanish-
ing gradient issues common in other RNN implementations
[7]. Here, the LSTM takes as input for time-step t the em-
bedding of a label and produces a hidden state ht as output
using the standard LSTM equations. The output at time step
t is then a vector

st =W ·ReLU(WI · I +Wh · h+ bh) + b (3)

where I is the output of the transfer learning CNN encoder,
WI and Wh are the projection matrices for the image and

2We referenced the code located at https://github.com/yunjey/pytorch-
tutorial/tree/master/tutorials/03-advanced/image captioning for a PyTorch
RNN example.

4



Figure 4: Architectures of the various CNN-RNN models: (a) label-only model (b) captioning model (c) binary decoder
model. These decoders are composed of a transfer learned CNN encoder, a sequence of LSTM cells, and either a small
feed-forward network or linear layer to get the final output at each time-step.

hidden state respectively, W is a projection matrix with an
output of size 18, and b and bh are bias terms. The score
vector st is converted to a probability distribution over la-
bels using softmax normalization.

In this framework, the behavior of the model differs at
training and test time. Let L be the vector of ground truth
labels for an image, sorted from the most common label to
the least. During training, at time step t we feed in Lt−1

as input, and the loss the model incurs is the cross entropy
loss between the score vector st and the true next label Lt.
This formulation has edge cases for the input at the first time
step and the output at the last time step. To begin, we feed
the LSTM the embedding of a special START label, and we
force the LSTM to predict a special END label at the end of
the sequence (explaining why the W matrix has output size
18 even though there are only 17 true labels).

During testing time, we take a simple greedy approach to
predict the set of labels for an image. We start by feeding in
the START label to the LSTM, getting an initial score vec-
tor s1 as output. The argmax index of this vector is the label
which has the highest probability, so this label is fed as in-
put to the next iteration of the LSTM. This process repeats
until we have made 17 predictions or until we sample the
END label, whichever occurs first. This procedure can be
seen pictorially represented in Figure 4(a). In this diagram,
the network first predicts label 6, this is then fed as input to
the second step which predicts label 2, and when that is fed
to the third step we sample the final END label, stopping
the process. Although a beam search approach to decod-
ing might have produced slightly better results by avoiding
bad early decisions, we chose this greedy approach for its
simplicity and speed.

The final potential point of concern is the decision to
force the RNN to predict labels in order of decreasing fre-
quency. Although in theory we could have trained the
model to predict the labels in any order, we chose this spe-
cific order for ease of training. Our simple cross-entropy
loss function punishes the model not only if predicts a label
which does not apply to the image, but also if it predicts a
true label in the wrong order of the sequence. By ordering
the labels as we have, the label sequences for the images

look as alike as possible for as long as possible.

4.4. Captioning RNN Model

This model was based off of the neural image captioning
model of Vinyals et al. [18], as well as our third CS231N
assignment. This model is similar to the label-only model
in that the input to the RNN is the previously predicted label
and the output at each time step is a score vector over the 17
different true labels and the END label. However, whereas
the previous model combined the output of the CNN with
the output of the LSTM using a small feed-forward neural
net, in this model the image features from the CNN are fed
as the initial hidden state for the LSTM.

4.5. Binary Decoder RNN Model

This model combines aspects of the simple transfer
learning model and the neural captioning model. Like the
captioning model, the image features from the CNN are
still fed as the starting hidden state of the LSTM. How-
ever, whereas the previous models output variable length
sequences, this model runs for exactly 17 time-steps, each
time producing a single scalar which is the score for one
particular class. Thus, while training we use the same loss
function given in Equation 1, and while testing we use the
same procedure of predicting any labels whose score is
greater than the corresponding threshold.

Because this model has to make an explicit prediction
for each of the 17 labels, we expect it to have better per-
formance than the models which output a sequence, since
these models will terminate as soon as they predict an END
label. However, we also hope that the addition of the RNN
component will enable this model to outperform the CNN,
since it now explicitly handles connections between labels.

5. Experiments
Since there was no validation set provided by the orga-

nizers of the competition, we designated 10% of our train-
ing data as validation. It was important to sample this data
intelligently, since the label distribution was so skewed. If
we were to simply take a random selection of 10% of the

5



Figure 5: Training loss (blue, left Y-axis) as well as training
and validation F2 scores (red and green, right Y-axis) as a
function of training epoch.

training data, it is quite possible that our sample would con-
tain no examples with several of the labels. Therefore, we
made sure to sample roughly 10% of the examples from
each of the labels.

Our experiments were run using the Adam optimizer
with a batch size of 32. The majority of our models in-
volved a pre-trained CNN module with either a new linear
layer or RNN at the end. Therefore, in order to train these
models, we first trained only our custom layers for around
15 epochs. Once those new layers had converged, we be-
gan to train the entire network as a whole for another 20
epochs. The learning rate during the first round of training
was larger than during the second (they typically started at
around 10−3 and 10−4, respectively), and we implemented
an annealing learning rate which decreased by a factor of
around 1.5 after each epoch.

Figure 5 shows the evolution of training loss and F2
scores during the course of 30 training epochs for the
ResNet-50 model. We see that decreases in the training loss
correspond to increases in the F2 scores, even though we
don’t optimize directly for the F2 score during training. The
slightly higher validation F2 values suggest that our models
don’t suffer from overfitting.

In the testing phase of both the CNN-only and binary
decoder RNN models, the predicted labels are found by se-
lecting all scores which lie above some designated thresh-
old for that class. Because each threshold only impacts the
predictions for a single label, each threshold can be com-
puted independently. Thus, at the end of training, in or-
der to compute the thresholds we simply generated scores
for each of the examples in the training set, and then for
each label found the threshold value which gives the best
F2 score. We found that the threshold were vastly differ-
ent for each class, ranging from 0.08 for the “road” label
to 0.39 for “conventional mine”. This can be interpreted as
follows: labels with low thresholds, such as “road”, are easy
to identify and occur rather often in our dataset. Therefore

we are very confident in our prediction for these classes. On
the other hand, labels with high thresholds, such as “con-
ventional mine”, are harder to distinguish and occur very
rarely in our dataset. Hence we are not so confident in these
prediction and only assign these labels when we have an
extremely high score for them.

5.1. Evaluation Metric

To evaluate our results, we are using the average F2 met-
ric, which is the metric being used in the official Kaggle
competition. For each example, we compute the F2 score
via the equation

F2 = (1 + β2)
pr

β2p+ r
(4)

where p is the precision of the predicted set of labels, r is
the recall, and β = 2. Note that based on this metric, it is
better to predict a label an incorrect label (a false positive)
than it is to not predict a correct label (a false negative). The
final score is simply the average across all testing examples.

5.2. Results

The results from each of our explored models are shown
in Table 1. We create an ensemble from our best-performing
models, where the labels for each image are determined by
majority vote from the labels predicted by each model. That
is, if a label is predicted by at least half the models in our
ensemble, then that label is predicted for the image.

We found that the binary RNN model had the best perfor-
mance of the three RNN models explored, although it was
still worse than any of the pretrained CNN models. No-
tice that the ResNet-50 model that was trained exclusively
on our dataset performed significantly worse than its coun-
terpart that was pre-trained on the ImageNet dataset. This
performance test convinced us to switch entirely to using
pre-trained CNNs. We also experimented with the number
of layers for the ResNet architecture. Table 1 shows that the
F2 scores become progressively higher as we increase the
depth and number of parameters in our model. This sug-
gests that indeed deeper architectures perform slightly bet-
ter on this task. Also, the performance of DenseNet-169 is
on par with the rest of the models, even though it has fewer
parameters. This justifies our use of DenseNet as the main
convolutional network for all the RNN-CNN architectures.

Figure 6 shows a few example images on which our mod-
els try to predict labels. In the leftmost image, we correctly
identify all the labels: primary, agriculture, clear, cultiva-
tion, habitation, and road. In the next image, our predic-
tions also match the ground truth, except that we also pre-
dict the existence of a road in this picture. However, if we
look more carefully, we can see that there is indeed a road
which was not included as a ground truth. This shows that
the labels are not always correct. Lastly, we get the wrong

6



Figure 6: Several examples on which we generate predic-
tions.

labels on the rightmost image by predicting habitation, con-
ventional mine, and bare ground. It shows that our model
has difficulties predicting the more rare labels.

Model Val F2 Test F2
ResNet-18 0.91104 0.92229

ResNet-50 (not pre-trained) 0.88916 0.90269
ResNet-50 0.91462 0.92335
ResNet-152 0.91387 0.92401

DenseNet-169 0.92755 0.92276
Label-Only RNN 0.91184 0.90624

Caption RNN 0.90765 0.90467
Binary RNN 0.91168 0.91127

Ensemble - 0.92555
Current Kaggle Leader - 0.93334

Table 1: A table showing the F2 scores for each model on
both our validation and test sets.

Figure 7 shows the precision and recall for each of the
labels as generated by (a) a CNN-only model and (b) the
label-only RNN-based model. These models had fairly sim-
ilar scores on the test set (the difference in F2 score was
around 0.015), but by examining the data we can see that
they took very different routes to achieve this high score.
Across the board, the CNN-based model had a much higher
recall score, meaning that when there was a label that it was
unsure of, the model tended to predict the label rather than
leaving it out. The fact that this model had higher recall
scores is unsurprising: as previously discussed, we chose
thresholds which specifically optimized for F2 score, and
the F2 score weights recall over precision.

On the other hand, the RNN-based model was more con-
servative and tended to have a higher precision score, mean-
ing that it would only predict labels that it was extremely
confident of. Again, we can trace this behavior back to fea-
tures of the model. The models which generate sequences
stop as soon as they predict an END label, which means
that the model can avoid making a judgment call on some
of the harder, more rare labels. This is opposed to the mod-
els which use thresholds, as they are forced to produce a
score for each label.

This explanation is supported by the other two RNN
models, caption and binary. Although we have not included
the graphs, the corresponding image for the caption RNN
model looks very similar to the label-only model, and the
binary RNN model looks similar to the CNN. Thus, we see
that the two models which output sequences tend to have
higher precision, and the two models which generate a score
for each label tend to have higher recall.

6. Conclusion
In conclusion, we have demonstrated several success-

ful models for multi-label classification on satellite images.
In particular, we have explored three different RNN-based
models. Interestingly, although each of the three models
performed well, we have shown that they perform well for
different reasons. While models that output a score for each
label tend to take risks and have high recall, those which
output sequences tend to be more risk-adverse and have
higher precision.

In the future, we would like to extend our work by ex-
ploring different loss functions and prediction strategies for
the RNN models which produce sequences. Again, while in
theory the sequence model should be able to learn to output
the labels in our forced ordering, it is likely that this strict
requirement causes the model to focus on getting the labels
in the correct order rather than focusing on learning the true
labels to predict. We would also likely to explore further
data augmentation techniques, as it is likely that without
more examples of the rare labels it will be impossible to
achieve much higher F2 scores.

References
[1] S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano,

M. Karki, and R. Nemani. Deepsat: a learning framework
for satellite imagery. In Proceedings of the 23rd SIGSPA-
TIAL International Conference on Advances in Geographic
Information Systems, page 37. ACM, 2015.

[2] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learn-
ing multi-label scene classification. Pattern Recognition,
37(9):1757 – 1771, 2004.

[3] S. E. Decatur. Application of neural networks to terrain clas-
sification. In Proc. IJCNN, pages 283–288, 1989.

[4] Y. Gong, Y. Jia, T. Leung, A. Toshev, and S. Ioffe. Deep
convolutional ranking for multilabel image annotation. arXiv
preprint arXiv:1312.4894, 2013.

[5] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid.
Tagprop: Discriminative metric learning in nearest neigh-
bor models for image auto-annotation. In Computer Vision,
2009 IEEE 12th International Conference on, pages 309–
316. IEEE, 2009.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

7



(a) CNN-only model.

(b) Label-only RNN model

Figure 7: The precision and recall for each of the classes as generated by a two different types of models.

[7] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[8] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.
Densely connected convolutional networks. arXiv preprint
arXiv:1608.06993, 2016.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[10] A. Makadia, V. Pavlovic, and S. Kumar. A new baseline
for image annotation. Computer Vision–ECCV 2008, pages
316–329, 2008.

[11] S. K. McFeeters. The use of the normalized difference water
index (ndwi) in the delineation of open water features. Inter-
national journal of remote sensing, 17(7):1425–1432, 1996.

[12] V. Mnih and G. Hinton. Learning to detect roads in high-
resolution aerial images. Computer Vision–ECCV 2010,
pages 210–223, 2010.

[13] V. Mnih and G. E. Hinton. Learning to label aerial images
from noisy data. In Proceedings of the 29th International

Conference on Machine Learning (ICML-12), pages 567–
574, 2012.

[14] K. Nogueira, O. A. Penatti, and J. A. dos Santos. Towards
better exploiting convolutional neural networks for remote
sensing scene classification. Pattern Recognition, 61:539–
556, 2017.

[15] O. A. Penatti, K. Nogueira, and J. A. dos Santos. Do deep
features generalize from everyday objects to remote sensing
and aerial scenes domains? In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 44–51, 2015.

[16] J. Rouse Jr, R. Haas, J. Schell, and D. Deering. Monitoring
vegetation systems in the great plains with erts. Goddard
Space Flight Center 3d ERTS-1 Symp., 1974.

[17] https://www.kaggle.com/c/
planet-understanding-the-amazon-from-space.

[18] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and
tell: A neural image caption generator. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3156–3164, 2015.

8

https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space


[19] J. Wang, C. Luo, H. Huang, H. Zhao, and S. Wang. Trans-
ferring pre-trained deep cnns for remote scene classification
with general features learned from linear pca network. Re-
mote Sensing, 9(3):225, 2017.

[20] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu.
Cnn-rnn: A unified framework for multi-label image classifi-
cation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2285–2294, 2016.

[21] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao, and
S. Yan. Cnn: Single-label to multi-label. arXiv preprint
arXiv:1406.5726, 2014.

[22] M. Xie, N. Jean, M. Burke, D. Lobell, and S. Ermon.
Transfer learning from deep features for remote sensing and
poverty mapping. arXiv preprint arXiv:1510.00098, 2015.

[23] M.-L. Zhang and Z.-H. Zhou. Multilabel neural networks
with applications to functional genomics and text categoriza-
tion. IEEE transactions on Knowledge and Data Engineer-
ing, 18(10):1338–1351, 2006.

9


