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Abstract

We investigate a detection algorithm to detect and track
changes in forests in Amazon Basin. This problem is in-
teresting because deforestation in the Amazon Basin is be-
coming more and more severe, contributing to reduced bio-
diversity, habitat loss, climate change, and other devastat-
ing effects. And better data about deforestation situations
and causes can help governments and local stakeholders
respond more quickly and effectively to protect the forest.
In this project, we use a data set of satellite images to train
neural network models to understand the deforestation in
Amazon forest using high resolution satellite images. We
mainly leverage pretrained VGG model to extract low level
features from RGB channels and currently disregard the in-
formation from infrared channels. We use both data aug-
mentation and more specialized neural nets to overcome
the severely skewed class label distribution. Through this
project, we explore the effect of data augmentation, training
strategy and network architectures on prediction accuracy.

1. Introduction
The largest deforestation of the world is happening in

Amazon Basin every day, which also speeds up reduced bio-
diversity, climate change, habitat loss, and other devastating
effects. To help address this problem, thousands of satel-
lite image chips with atmospheric conditions and different
classes of labels have been collected. However, no efficient
working methods have been developed to label those planet
images to differentiate different causes of forest loss.

We investigated using pretrained convolutional neural
network (CNN) to detect and track changes of forests in
Amazon Basin based on those high resolution satellite im-
ages. To be more specific, we aimed at assigning multi-
labels to each image including categories of atmospheric
conditions, common land cover/land use phenomena,and
rare land cover/land use phenomena. Each image has one
atmospheric label and zero or more common and rare la-
bels. And the different labels are not independent. For ex-

ample, chips that are labeled as cloudy should have no other
labels, because if it’s cloudy, no view on the ground can be
achieved. However, there may be labeling errors due to la-
beling process and ambiguity of features. Some class labels
may be missing or incorrect. We are expecting that we are
working with data with relatively high noise.

The input to our algorithm is a satellite image with four
channels: red (R), green (G), blue (B) and near infrared
(NIR). We then use a CNN to output predicted multiple la-
bels. Each chip will have exactly one atmospheric label and
zero or more common and rare labels. Chips that are labeled
as cloudy for atmospheric label should have no other labels.
Different methods have been tried for object recognition in
satellite images.

Training data provided contains 40479 satellite images
with 4 channels (RGB and near infrared) with 16 bits color
[12]. Each image comes with a tag, which can include
three types of labels: atmospheric condition, common land
cover/land use phenomena, and rare land cover/land use
phenomena. We split the provided training data into train-
ing set and validation set. The training set contains 36000
images randomly picked from the training data, the valida-
tion set contains the left 4479 images from the validation
set.

Three categories of labels includes 17 specific labels
in total. To be more specific, weather category contains:
clear, partly cloudy, cloudy, and haze, which closely reflect
what we observe in a local weather forecast. Haze is de-
fined where atmospheric clouds are visible but they are not
opaque enough to block the ground view. Cloudy is defined
as 90% of the ground view on the image blocked by opaque
cloud cover. Partly cloudy is defined as opaque cloud cov-
ers part of the image. Clear is defined as no cloud or haze
exist and the ground is very clear. The common labels in
this dataset includes primary rain forest, Water (rivers and
lakes), Habitation, agriculture, road, cultivation and bare
ground. Rare labels includes the slash and burn agricul-
ture, selective logging, blooming, conventional mining, and
”artisinal” mining. And a random selection of 8 images and
their corresponding labels are shown in Figure 1.

Our problem is a multi-class (non-exclusive) classifica-
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Figure 1. Eight randomly sampled images (showing the RGB channel) with different tags.

tion problem. Two steps are needed to solve it: one is
feature extraction and another is classification. We extract
features using mainly CNNs and feed them into fully con-
nected layer to outputs a score for each class. The scores are
then used to output the presence or absence of each class la-
bel. To quantify the loss of multi-class(non-exclusive) clas-
sification problem, we introduce the binary cross entropy
loss. The binary cross entropy loss generates a probability
vector corresponding to each label class instead of a scalar
in the end. So we select a probability criteria to decide
whether the label exists or not. To be more specific, if the
element in generated probability vector is greater than the
criteria, then we assume set the predicted label for the cor-
responding class is 1, otherwise 0. At the same time, con-
sider that the classes in the weather category are exclusive,
we later employ the softmax cross entropy loss for weather
label prediction and combine two losses together. The CNN
investigated in this report is one simple CNN and pretrained
VGG-16 [12].

2. Background and Related Work

As a challenging topic, satellite image classification usu-
ally involves in tons of data and large variations. Tradi-
tional machine learning algorithms such as random forest
cannot handle extractions of a huge amount of features. Re-
cently, people begins to turn to focus on machine learning,
CNN and Deep belief Network for classification of satellite
images. Muhammad et al. [1] extract attributes including
organization of color pixels and pixel intensity using deci-
sion tree for training, although the test is only conducted
on a very limited data set. Goswami et al. [2] used satel-

lite images to train a multi-layer perceptron (MLP) model
which employs back propagation (EBP) learning algorithm
for a two-class waterbody object detection problem. Al-
though the problem itself is simplified because there’s only
two classes, but they can achieve comparatively high test ac-
curacy and demonstrate the applicability of neural network
on satellite image classification. Basu et al. [13] builds
a classification framework which extracts features from an
input images and feeds the normalized feature vectors to a
Deep Belief Network for classification. The authors show
that their framework outperforms CNN over 10% on two
datasets they build up. Penatti et al. [14] use arial and
remote sensing images to train CNNs and make compar-
isons between the performance of the ConvNets and other
low-level color descriptors and show the advantages CNNs
get. They also shows the possibility of combining differ-
ent CNNs with other descriptors or fusing multiple CNNs.
Nogueira et al [15] further explore the CNN for classifica-
tion of remote sensing images. They extract features us-
ing CNNs and conduct experiments over 3 remote sens-
ing datasets by using six popular CNN models and achieve
state-of-art results.

Another important topic directly related to satellite im-
age classification problem is object detection because there
are usually multiple labels for a single satellite image and
what are in the image are always required to be clarified.
A naive approach for locating objects in images is sliding
window boxes with different sizes at selected locations of
the image and classify those window boxes [3, 4]. This can
lead to satisfying accuracy but incur considerable compu-
tational cost [5]. By replacing fully connected layer with
convolutional neural network, the computational cost is re-
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duced significantly [5]. Regional convolutional neural net-
work (R-CNN) rises as an efficient and accurate approach to
addressing object detection problems [6]. It first employs a
regional proposal method to locate regions of possible inter-
est in the image, then applies neural network to classify the
object proposed [7,8]. Segmentation works as another state-
of-the-art approach for object detection [9, 10, 11]. The ba-
sic idea of segmentation approach is to generate a label map
for each pixel in the image.

3. Approach

As mentioned in the introduction section, we mainly
use provided training data set which contains 40479 im-
ages with 4 channels (RGB and near infrared) and 16 bits
color. Each image in the training dataset has dimension of
256× 256× 4. Each image can have multiple labels at the
same time.

Consider the loading efficiency for a comparatively large
data set, we first performed data preprocessing by loading
all the training images and their labels into a numpy ar-
ray. We compress the training images from 16 bits color
into 8 bits color to reduce the data file size and improve the
loading efficiency. By conducting this, we finally obtain a
numpy array which contains 40479 images data and can be
loaded within 2 minutes for future training. We further split
the training data into training set (36000) and validation set
(4479).

Some work has been done and posted on Kaggle discus-
sion panel about the little impact of NIR data on the im-
provement of trained model and prediction accuracy. While
at the same time, the fourth channel increase the data size
enormously. We believe that the NIR (near infrared) can
hardly help the prediction and consider that it can possibly
overload GPU, so currently we disregard the NIR data in
our project. So we truncate the dimension of our data set to
be 40479× 256× 256× 3 by ignoring the NIR channel.

Next, to address the multi-label (non-exclusive) classi-
fication problem, we intuitively adopt the binary cross en-
tropy loss to detour around more complicated object detec-
tion technique, which proves to work well later. Let there
be m possible class labels present in the tag of each image.
Let pj be the probability of label j appearing in the image.
The correct label for the image is expressed by a vector yj :
yj=1, if the jth label appears in the tag of image.
yj=0, if the jth label does not appear in the tag of image.
Now, the loss for this image can be defined as:

L =

m∑
j

−log(pj)yj − log(1− σ(sj))(1− yj)

L =

m∑
j

−log(σ(sj))yj − log(1− σ(sj))(1− yj)

where, σ(x) is the sigmoid function. We minimize the
mean loss defined by the equation above. Essentially, this
loss function tries to minimize the score for each incorrect
class label and maximize the score for each correct class
label. After defined our method, we now proceed to outline
our model strategy and different experiments that we plan
to conduct.

One feature of the label we notice is that weather labels
are exclusive, that is we can have one and one only weather
label, we assign weather label a different loss function: soft-
max cross entropy loss. And it is defined by the equation
below:

L =
exp(sy)∑
j exp(sj)

.
To evaluate the performance of the trained model, F2

score is adopted. The F score, commonly used in infor-
mation retrieval, measures accuracy using the precision p
and recall r. Precision is the ratio of true positives tp to all
predicted positives (tp + fp), where fp represent number of
false positives. Recall is the ratio of true positives to all ac-
tual positives (tp + fn), where fn represent the false non
positives. The F2 score is given by

F2 = (1 + β2)
pr

β2p+ r
,

wherep =
tp

tp+ fp
, r =

tp

tp+ fn
, β = 2.

The mean F2 score is computed by averaging the individual
F2 scores on each row in the validation set.

We first try building a simple CNN model which con-
tains 4 convolutional layers and corresponding activation
and regularization process and three fully connected lay-
ers specifically for weather label prediction. As we men-
tioned, the four weather labels (clear, haze, ”partly cloudy”
and cloudy) are mutually exclusive. We develop a model to
classify all the images into these 4 weather classes. If the
cloudy is predicted, we also know that no other labels will
be present. This will let other model nets be more focused
on predicting other type of labels. Besides, we can simply
adopt softmax cross entropy loss to train the model.

Next, we use the pretrained VGG-16 model to extract the
useful low level features from the RGB channels of the im-
age. We discard the NIR channel and disable data augmen-
tation for now. In this model, we train the network to output
prediction of the presence of all 17 class labels at the same
time, but use softmax cross entropy loss for the weather and
sigmoid cross entropy loss for other non-exclusive common
and less common labels. The difference between the pre-
vious VGG-16 model and modified one is shown in figure
2.

Finally, we use the pretrained VGG-16 model but en-
able data augmentation and balancing this time. Explor-
ing the impacts of data augmentation and data balancing on
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Figure 2. Network Architecture for two modified VGG-16 models.

Figure 3. Distribution of class labels.

improving training result is one of the main topics in this
project.

One obvious feature of this data is that our training data
set is extremely unbalanced. For example, The overwhelm-
ing majority of the data set is labeled as ”primary”, which
stands for primary rainforest. The distribution of the each
individual label is shown in figure 3. We can easily ob-
serve that the dominant labels are weather label ’clear’ and
common label ’primary’. The highly skewed distribution of
label from random sampling indicates that data augmenta-
tion and balance may be necessary to train a reliable model.
We also see high dependency between agriculture, habita-
tion and roads.

Data augmentation and data balancing can improve our
training result. In this first place, we used a relatively
small training data set, which only contains 8000 images
for our model training, and kept receiving undesirable train-

Figure 4. Examples of training images generated by data augmen-
tation. The middle and right-most images are generated by ran-
domly rotating and fliping left-most image.

ing results including fast convergence to local minimum and
low training accuracy. After we switch to a larger training
dataset, everything starts to work out. And we know that
data augmentation is extremely helpful to increase the size
training set, which particularly helps those labels with lim-
ited number of image examples. We randomly flip, rotate
and shift the training images while training to an infinite
flow of transformed training images. A simple illustration
of flip, rotate and shift of images is shown in Figure 4.

To make up for the unevenly distributed labels and their
corresponding images, we carried out data balancing by
randomly downsample the top 5 major labels to the fregure
Data balancing is done by randomly downsample the top
5 majoriy labels to the frequency of the first five majority
labels. The heavy data augmentation and data balancing
are conducted to prevent training and network that can only
precisely identify clear primary and fail on other labels.

4. Experiment Result

4.1. Weather label forecasting

Since the four weather classes (clear,haze,partially
cloudy, cloudy) are mutually exclusive, we designed the
small CNN network to classify them separately from the
network that focuses on classify the land forms. This rather
simple net achieves 91% validation accuracy. And the his-
tory of training and validation accuracy over iterations is
shown in figure 5.

We can observe that training accuracy increases steadily
while validation accuracy converges to 91% after 2 × 104

iterations. Here we take a batch of 100 randomly selected
samples from 36000 training examples every iteration due
to the memory limit of GPU. For validation accuracy, we
iterate to compute the validation accuracy over 4479 vali-
dation examples to detour around the GPU memory limit.
Here, no data augmentation nor balancing is conducted to
assist training. We can observe some sudden decrease in
both training and validation accuracy, which is mainly due
to sample batch with large noise or unbalanced data. This
can be partly overcome by proper data augmentation and
balancing.
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Figure 5. Training and validation accuracy for weather prediction.
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Figure 6. Training loss comparison for different data preprocess-
ing (case 1: skewed and no augmentation; case 2: skewed and
augmentation; case 3: balanced and augmentation).

4.2. Impact of data augmentation and balancing

Several control experiment has been conducted to study
the impact of data augmentation and balancing in this
project. And all the experiments are carried out based on
using the pretrained VGG-16 network. Because the input
size of images for pretrained VGG-16 is 224 × 224 × 3,
so we randomly truncated the 256 × 256 × 3 images into
224× 224× 3. Resizing the images in this way can hardly
affect the training result because the features of the image
can easily be maintained by a large portion of the image.

We compared the training results over a training data set
with size 5000 among using skewed and augmented data,
skewed and non-augmented data, and balanced and aug-
mented data. The comparison of training loss for differ-
ent data preprocessing is illustrated in Figure 6. And the
comparison of F2 scores for training and validation using
different data preprocessing is shown in Figure 7.
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Figure 7. Training loss comparison for different data preprocess-
ing (case 1: skewed and no augmentation; case 2: skewed and
augmentation; case 3: balanced and augmentation).

We can see from Figure 7 that when using skewed data
with no augmentation, we can achieve very high training ac-
curacy while relatively low validation accuracy, which is a
sign of overfitting. With augmentation added in case 2, the
training and validation score track nicely with each other,
effectively preventing overfitting. When data balancing is
applied in case 3, we also observe that over-fitting is over-
come but with higher oscillation in validation score, which
we argue is from the different distribution of training and
validation set. In our experiment, only training set is bal-
anced and validation set is still skew. We also notice that
both data augmentation and data balancing increases the
training loss compared to the case without balancing or data
augmentation, shown in Figure 6. We concluded that it’s
more difficult to train on a blanced dataset. This might be
counter-intuitive but it actually makes sense. If the dataset
is skew, it’s relatively ”easy” for the network to learn just
the feature of the majority class and converge. With a bal-
anced dataset, the network needs to learn more features and
thus takes more iterations and more careful tuning to reach
high accuracy.

5. Conclusion and Future Work

By the control experiments conducted, we realize that di-
rect training on dataset with highly skew class distribution
can bias the model to predict the majority class. Data aug-
mentation is helpful in improving learning and preventing
overfitting while data balancing is helpful in preventing the
model fitting to the majority class but also more difficult to
learn well. The particularly exclusive signature of different
weather labels can be classified separately by simpler net
and loss function, which reduce the burden of the other net
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by letting it focused on classifying different landforms.
So far we only employed the RGB channels for training

but ignored the NIR channel because as we mentioned some
work indicates that NIR channel is not very helpful. But it
can be a model by model case. So we plan to explore us-
ing NIR data as the fourth channel on our model. Besides,
color histogram and histogram of gradient orientation can
also be adopted to assist CNN to capture features more fast
and accurately. For example, we expect that the histograms
of images with different weather tags can be reflected by
the area where white color is synthesized on the color his-
togram. More importantly, we believe that separating the
prediction of labels into different classifiers (CNN models)
is also an interesting and promising way worth trying. On
one hand, separating the rare labels into a group and us-
ing an individual CNN classifier for training is equivalent
to data balancing. Because images with those labels have
the same magnitude of quantities. We believe with the help
of data augmentation to increase the size of training data
set, better training and validation results can be achieved by
setting up individual VGG models for different categories
of labels.
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