
Final Report
Deep Multi-Label Classification for High Resolution

Satellite Imagery of Rainforests

Robert Sun
Stanford University
robsun@stanford.edu

Christian Castellanos
Stanford University

ccastell@stanford.edu

Andrew Nguyen
Stanford University

aknguyen@stanford.edu

Abstract

Satellite rainforest imagery is extremely helpful in track-
ing down deforestation and analyzing behaviors that con-
tribute to wildlife destruction. Constant monitoring of this
imagery however is completely infeasible for humans and
so convolutional neural networks are the perfect candidate
for detecting satellite image features. In this paper, we dis-
cuss our strategy for multi-label classification of Amazon
satellite imagery. Each image can have multiple tags ac-
tivated like ”clear, slash and burn, habitation, water” and
the classifier must be able to detect these wide-scale and
small-scale features simultaneously.

We applied state-of-the-art image classification architec-
tures and developed an original CNN architecture for solv-
ing this problem. Using a binary cross-entropy loss func-
tion and our own architecture, we achieved an F2 score of
0.9228 on the validation set. We showcase visualizations
of the network on a variety of input images to validate that
the network is generalizing to the specific land features for
each label.

1. Introduction
Rainforests such as the Amazon are under constant at-

tack by loggers, miners, and human civilization for the land
and resources it provides. It is important to know and un-
derstand the where, when, why, and how of deforestation in
order to decide how best to maintain the remaining rainfor-
est.

High resolution satellite imagery of the Amazon and
other rainforests are relatively easy to acquire, but tagging
imagery for specific features is often time consuming and
intractable for a large landmass. Especially when tracking
rainforest changes over months or years, human labeling of
satellite imagery is completely impossible. The use of a
CNN for continuous labeling of this imagery is extremely
helpful in determining changes of rainforest condition.

The key attribute of this dataset and problem is that each

image can have multiple labels, with little logical depen-
dence between the labels. Each image can have 17 different
tags activated; one example can have tags such as ”clear
sky, primary rainforest, roads, blooming, water”, and an-
other have just ”haze”. We decided that using standard con-
volutional feed-forward network to predict the labels of the
satellite imagery was the best option.

After many trials of different network topologies, we ar-
rived at a multi-layer CNN that takes in 128x128x3 resized
RGB satellite images and outputs a 17-long vector repre-
senting label activations. This vector directly comes from
a sigmoidal activation layer and is therefore squashed be-
tween 0-1. The threshold for whether the label is ON or
OFF is determined empirically via cross validation after sta-
tistical analysis.

1.1. Dataset and Kaggle Competition

The pre-labeled dataset of Amazon rainforest satellite
imagery was provided by Planet through Kaggle.

Kaggle, a platform for data science and analytics com-
petitions, allows companies and organizations around the
world to create data-based competitions and enlist the help
of data analysts and machine learning hobbyists. Our
project serves as an entry for the Kaggle competition
Planet: Understanding the Amazon from Space.[13] Planet
produces satellites to image the Earth, and has created a
Kaggle competition to have entrants apply labels (e.g. re-
garding atmospheric conditions, deforestation, agriculture,
water sources, etc.) to high-resolution satellite imagery of
the Amazon Rainforest. Through the competition, Planet
hopes to ”help the global community better understand
where, how, and why deforestation happens all over the
world - and ultimately how to respond.”[13].

2. Related Work
The problem posed here is fundamentally a single label

image classification problem applied to seventeen potential
labels. As such, it is important to mention prior work re-
lated to image classification, as well as the many of the state

1



of the art models that the authors leveraged apply multiple
labels to a given satellite image.

2.1. Image Classification

CNNs have been the go-to for image classification since
2012 as per AlexNet in [9] due to advances in GPU com-
puting. For our project, we apply prior advances in im-
age classification to a multi-label problem with CNNs. The
multi-label classification problem relies on applying labels
to scenes where the labels themselves are not mutually in-
dependent, as researched by Boutell in [2]. They provide
general frameworks which can be applied to scene classifi-
cations.

The authors evaluated a number of different CNN ar-
chitectures mentioned below and applied transfer learning
[12] to the multi label image classification problem. Trans-
fer learning from these architectures allowed us to use pre-
trained ImageNet weights with a given architecture, and use
them to classify our images on each specific label without
retraining all of the weights for the entire architecture.

State-of-the-art CNN architectures for image classifica-
tion include VGG[15], Inception[16], and ResNet[5]. All of
these architectures were constructed with single label im-
age classification in mind, but can be easily generalizable
to multi-label classification via unfreezing layers and minor
modifications.

The VGG[15] CNN architecture relies on sequential
convolutions with 3x3 filters followed by max-pooling lay-
ers, repeated for depth. The architecture is relatively simple
compared to Resnet and Inception and relies on the princi-
ple that visual features in an image are hierarchical.

Inception[16] relies on an entirely different design
paradigm than those proposed earlier in [9] and [15], which
typically relied on sequential convolutions and max pooling
layers. The Inception architecture relies on the ’Inception
Module’, which consist of convolutions and max pooling
layers occurring in parallel, and stacked sequentially. This
results in a wider, more accurate network with only moder-
ately more computational complexity[16].

ResNet[5] is an incredibly deep architecture (152 lay-
ers), especially compared to Inception’s 22 layers and
VGG’s 19. Resnet utilizes learning residual layers, refer-
encing prior inputs in a sequential fashion.[5] Resnet re-
ported record breaking performance in the ImageNet chal-
lenge in 2015, besting all architectures prior.

2.2. Similar Problems

Albert in [1] Using convolutional networks and satel-
lite imagery to identify patterns in urban environments at
a large scale uses deep CNNs to label land use in urban
satellite images. Albert [1] also utilizes the ResNet and
VGG architectures for his research. Some single-label land
use classification problems similar to our rainforest classi-

fication problem include [3] [10] [17] [19] [20] [11] [21]
utilizing different information sources. [3] [19] [20] [11]
accomplish the task via CNNs.

2.3. Loss Function

The competition evaluation metric is the mean F2 score,
mentioned in greater detail below. The F2 score biases to-
wards the ratio of true positives to all actual positives (re-
call). Standard loss functions for classification problems,
e.g. logistic regression and softmax for single label and
multi-label identification, are convex and and easily posed
as minimization problems. However, the F2 score that we
seek to maximize is not a convex function. In [6] a novel
method for maximizing Fβ score via F-Measure loss is pro-
posed, allowing the author to easily bias towards recall.
Here, the authors decided to use a binary cross entropy loss
function given the challenge of implementation. The au-
thors leave implementation as future work.

2.4. Visual Evaluation Metrics

Visualizations were important for evaluating model per-
formance. The authors relied on two approaches imple-
mented in the Keras-Visualization project by Raghavendra
in [8]. Saliency maps, presented in [15], visualize how the
label scores change with respect to the pixels of an input
image. This is done by computing the gradient of the out-
put label with respect to the input image; for the purpose of
visualization, the gradients are overlayed on top of an input
image (with respect to each potential label). The intensities
of pixels are used to highlight the magnitude of the gradient.
In essence, we can use saliency maps to tell us which pix-
els of an input image provide the greatest contribution for
a class score. From a performance evaluation standpoint,
if we are evaluating whether or not the classifier is paying
attention to the right pixels of an image for a ground truth
label, we can use the attention maps to do so.

Another set of visualization that are used for evaluation
are class activation or heat maps via the Grad-CAM method,
presented in [14]. The Keras Visualization project uses
Grad-CAM internally, and the heat maps produced tell us
which regions in an image are most important for a class.
E.g., for the ’road’ label and an input image, if the classi-
fier is functioning properly, the heat map will put additional
intensity in the regions where roads are.

Saliency maps were particularly useful for evaluating the
classifier on less visible features; e.g. when one of our clas-
sifiers was functioning properly, the saliency map for the
’blooming’ label would show the individual pixels within
the image where blooming was occurring. However, for
more apparent labels such as roads, sparse pixels in the map
would be highlighted, rather than the road. The locality and
generality benefit from heat maps were more useful in this
situation. The visualization would show that the entire re-

2



gion around a feature from a true label was the one that had
the most impact on the label score. Both of them were used
as evaluation metrics.

3. Dataset

3.1. Dataset

The dataset consists of over 40,000 high resolution satel-
lite images, gathered between January 1, 2016 and February
1,2017, over the Amazon basin with a variety of features
associated with each image. There are 17 possible labels
for each image, and these labels can be separated into three
groups: atmospheric conditions, common land cover/land
use phenomena, and rare land cover/land use phenomena.
The 17 possible tags are: agriculture, artisinal mine, bare
ground, blooming, blow down, clear, cloudy, conventional
mine, cultivation, habitation, haze, partly cloudy, primary,
road, selective logging, slash burn, and water.

According to the data page for the Kaggle
competition[13], some of the data may have inher-
ently been labeled incorrectly due to ambiguity of certain
features and the nature of crowdsourcing. Additionally,
some of the scenes may have been mislabeled. Given the
vast size of the dataset, this should be a relative non-issue.

Images in the JPG versions of the dataset provided by
Planet come in the form of chips of 256x256 pixels. The
class label distribution is shown in bar plot figure 1 out of
one of the training sets of over 40000 images. Most images
have at least the primary and clear labels, but the bar plot
shows the frequency of labels across the training data.

Figure 1. Class Label Distribution over training images, code from
[18]

Figure 2 shows example images from each class from the
training data, although each image may have more than one
label.

Figure 2. Examples of dataset images

3.2. Dataset Split and Test Data

The training set contains 40,479 images and all of the
corresponding labels for each image in a .csv file. An
80%/20% split of the training set into training/validation
served as a good measure for validation. This leaves us with
approximately 32,383 images for the training set and 8,096
for the validation.

In terms of preprocessing our data, we ran our training
at various input sizes including 32x32, 64x64, 128x128,
and the original image size. Different batch sizes were also
tested but we set ours at 128 to achieve a good balance be-
tween training time and decent results.

4. Methods
4.1. Framework and Setup

We are using Keras[4] with a TensorFlow backend to
train our networks. Keras is written in Python and provides
a friendly and usable framework for instantiating and modi-
fying CNN architectures. Many of the more advanced CNN
architectures that we have covered in class have Keras im-
plementations, which allowed us to easily jump in and mod-
ify these architectures for our project.

Keras also allow us to easily load images and resize with
openCV, all whilst being constrained to a realistic memory
limitation. Keras also has an easy way to load and store
models while freezing any layers.

The models were trained on two local machines with
GTX 1080Tis with 16GB and 6GB of system RAM respec-
tively.

4.2. Pre-trained CNN Architectures

The top three image classification models today are clas-
sic Deep CNN style (VGG), inception layers (GoogLeNet),
and residual layers (ResNet). We choose to trial these three

3



types of nets on the multi-label classification problem first
as they seemed like good options for image classifications,
with the use of transfer learning and full random initializa-
tion.

Each three of these networks had a 3 Dimensional ten-
sor output (stacked kernels of 2D convolutional output). We
took a global 2D average pooling of these CNN feature de-
tectors and added one fully connected layer to get the size of
our output. The resulting 17-long vector was evaluated with
a binary cross-entropy loss (simple logistic) on each indi-
vidual element of the vector and the corresponding ground-
truth label (T/F). We take the average loss as the loss and
validate with labels exceeding 0.5 as T and F otherwise.

Loss =
1

m

∑
Li =

1

m
(

m∑
i=1

(−fyi + log
∑
j

efj ))

Using ImageNet pre-trained VGG-16, InceptionV3, and
ResNet-50 networks, we trained these ”bottom” layers sep-
arately, freezing the feature network above and assessed
their accuracy at convergence after multiple learning rate
plateaus.

The results of these networks showed some promise at
85% validation accuracy and on average about 0.75 F2

score. It meant that neural networks were suited for the
job but needed a lot more tuning to get accuracy higher. We
hoped that tuning the feature detectors (convolutional lay-
ers) would increase accuracy. Unfreezing different permu-
tations of the upper layers, we retrained until convergence
but there was an insignificant change in performance.

We finally attempted to completely train randomly ini-
tialized versions of these networks, as well as deeper ver-
sions like VGG-19 and ResNet-112. To our dismay, the
randomly initialized ones did converge fairly quickly but
produced about the same outputs as the initial experiments
we performed. Trying to deduce why these networks failed
to produce more accurate results, we ran some visualiza-
tions to see how the image pixels activated according to the
label activations.

We see in Figure 3 that ResNet is an architecture that
looks very broadly in an image. Possibly because of how
deep it is and how it is designed for single class identifica-
tion, it works poorly for detecting all these labels at once
and ends up with heat maps that cover large portions of
the input image instead of specific features. It is likely the
residual architecture does not allow for good separation of
the combined detailed and large-scale features. In a sin-
gle feed-through pass of an image, the network must detect
fine-grained features like blooming or roads, but also haze
or primary rainforest, features that cover the whole image.

VGG seems to perform a lot better in terms of the ar-
eas where the network should be focusing. In Figure 4,
the saliency map shows good activation of the bare ground

Figure 3. ResNet Visualizations

Figure 4. VGG Visualizations

pixels. Still, because of the network depth, possibly fine
grained features are lost and suffers the same issue as
ResNet. It is possible that these networks were too com-
plex for this application and training in this more complex
loss landscape suffered.

4.3. Simple Architecture

We sought to fit a simpler architecture and evaluate how
it performed. Taking influence from a VGG-style architec-
ture, we created a reduced-depth architecture of two con-
volutional layers followed by a max pooling layer and two
fully-connected layers. Figure 5 shows the architecture lay-
out.

4



Figure 5. Simple Network

Surprisingly, something as simple as this architecture
greatly outperformed the more complex VGG, ResNet, or
Inception networks and evaluated to a 92.1% validation ac-
curacy and 0.816 F2 Score. Our hypothesis was correct in
that the deeper networks must be getting lost during train-
ing. This led us in the direction of simpler custom networks
for this problem instead of using the complex ImageNet-
winning architectures.

The best score (above) we evaluated with this simple ar-
chitecture was with an input size of 64x64x3. Even though
the dataset had relatively large images, resizing the image
might have helped the optimization procedure as there are
less trainable weights or added more regularization to the
network.

4.4. Final Architecture

We cross-validated the increase in network size and
found that adding more convolutional layers to the simple
network from above worked well to increase accuracy. The
resulting architecture stacked blocks of batch normaliza-
tion, two convolutional layers, max pooling, and dropout on
top of each other resulting in fully connected layers. It was
a natural extension of the simple network and the successive
max pooling helped keep computation down while decreas-
ing the space of our features. The block layout was inspired
by other networks with similar goals[18]. With a final 5
blocks of convolutional layers as show in Figure 6, we were
able to achieve the best results on the validation set. Any-
thing deeper would have a decrease in F2-score. The batch
normalization layers helped increase training efficiency and
the dropout served as effective regularizers throughout all
networks.

5. Experimental Results
5.1. Evaluation Metrics

Performance in the Kaggle competition is based on the
mean F-Score F2, which measures performance based on

Figure 6. Final Network Architecture

precision, p, and recall, r. The F-Score penalizes a model
for false positives, fp, and false negatives, fn, with false
positives being penalized more highly. In the equations be-
low, tp refers to true positives and tn to true negatives. [13]

The equations for recall, precision, and the F-Score F2

5



Figure 7. Heatmap and Saliency Map results for best architecture

are given as follows[13]:

F2 =
1 + β2pr

β2p+ r
, where

r =
tp

tp+ fn
, p =

tp

tp+ fp
, β = 2

5.2. Training Details

Our final architecture uses an Adam[7] optimizer in lieu
of SGD. Adam performed reliably and favorably over dif-
ferent update rules in other environments.

For each CNN architecture we trained, we used a learn-
ing rate reducer to detect when the loss would plateau and
respond by reducing learning rate by a factor of 2

√
0.1 each

epoch. We started learning rate at 0.001 each time and that
worked quite well for all networks in conjunction with the
learning rate reducer. Training also stopped automatically
when the loss would stay the same within a 0.001x margin
for 10 epochs.

Each epoch consisted of a full run-through of all train-
ing images in batches of 128. The entire validation set was
evaluated at the end of each epoch to test for validation ac-
curacy, which is a metric that doesn’t fully reveal how well
our network performs on the multi-label problem, but serves
as an accurate metric for the advancement of training. The
F2 score used after training is the final evaluation that mat-
ters most.

Image augmentation like scaling or flipping and prepro-
cessing like ZCA whitening seemed unnecessary given the
large dataset. After doing a full optimization of our net-
work, we felt that a rework of architecture or loss function

principles would bring far better scores than adding image
augmentation. The few trials we had with image augmenta-
tion only served to increase training time instead of provide
generalization to the networks.

5.3. Hyperparameter Optimization

After we had determined the optimal architecture, we
tried a variety of image-resize sizes in order to further max-
imize F2 score. Due to the relatively simple architecture,
as well as having local machines to train on, iterating over
potential image sizes was trivial.We tried 32x32, 64x64,
128x128, and 256x256, and found that 128x128 produced
the best F2 score on the validation set.

The output of the classifier is a 17-vector of probabilities
[0, 1] that represent the probability pi, i = 1, . . . , 17, where
pi represent the probability that label i applies to an input
image. For the purposes of multi-label classification, we
instead require a binary 17-vector representing a label being
on or off. A threshold value, t, is needed as a cutoff for
each label i, to determine whether the label is active or not
for classification purposes. To determine the threshold t,
we tried two methods: search thresholding (searching for
the best F2 score based on varying the thresholds for each
label) and per-label sample thresholding.

Per-label sample thresholding had inarguably worse re-
sults than the search thresholding. To determine the per-
label thresholds, we used the ground truths from the valida-
tion set to determine the ratio of ’offs’ to ’ons’ for a given
label. We believed that the classifier’s predictions on the
validation set would converge to these values, so they would
serve as an adequate per-label threshold. They did not, as
this resulted in an F2 score of .82 on both the test (evaluated

6



on Kaggle[13] and validation set, compared to our search
thresholding.

Once we settled on a final model, we instead searched
over 40 potential values from .05 to .4 for each of the labels
and find the combination that produced the best F2 score.
With thresholds of (0.134, 0.134, 0.233, 0.219, 0.05,
0.275, 0.078, 0.092, 0.092, 0.458, 0.064, 0.148, 0.148,
0.162, 0.106, 0.458, 0.261) for the respective classes: haze,
selective logging, bare ground, cultivation, cloudy, clear,
partly cloudy, conventional mine, blooming, blow down, ar-
tisinal mine, agriculture, habitation, water, road, slash burn,
primary.

5.4. Final Architecture Results

Our final architecture managed to score 96.5% valida-
tion accuracy with a F2 score of 0.9228 on the valida-
tion set. Figure 7 shows several of the resulting heatmaps
and saliency maps of some of the classifications which we
used to qualitatively verify the effectiveness of our net-
work. Specifically, we can see that the saliency maps and
heatmaps for the cultivation label accurately looked at the
cleared patch of land in the upper left corner for applying
the label. The partly cloudy class feature visualizations are
not spot on, but show significantly hotter regions closer to
the clouds in their heatmaps. For the conventional mine
class, a lot of the superpixels in the saliency map near the
bare ground and road features of the image. Likewise, the
agriculture class shows similar results with its solid iden-
tification of the large patch of cleared ground as farmland
in both the heatmap and saliency maps. Finally, the habita-
tion class’s features to the left side of the image that pop out
from the rest of the forest features are seen as hotter in the
heatmap and as superpixels in the saliency map.

Visualizations for different images on the same labels
through random sampling shows very similar results. The
precision and recall scores on a per-label basis can be seen
above in Table 1. Our lackluster performance on labels such
as blow down, slash burn, and bare ground hinder our F2

score, as our classifier was not able to correctly predict any
true positives, thus setting the precision and recall for those
categories to 0. The ground true positives for those labels
were incorrectly predicted as false negatives. Additional fo-
cus in the future should be put on enhancing performance on
those label scores.

5.5. Kaggle Leaderboard

The Kaggle competition provides a set of unlabeled test
images. Participants must use their model to evaluate the
labels for each of the test images, submit predictions to
the Kaggle homepage, and then F2 scores are computed on
each set of predicted labels given a test image. The mean
of the F2 scores is computed and used as the primary eval-
uation metric. For the purposes of the Kaggle leaderboard,

Table 1. Precision and Recall Scores on Validation Set
Class Precision Recall
haze 0.554 0.867
selective logging 0.475 0.389
bare ground 0.44 0.229
cultivation 0.5 0.711
cloudy 0.603 0.965
clear 0.946 0.988
partly cloudy 0.855 0.966
conventional mine 0.368 0.318
blooming 0.32 0.397
blow down 0 0
artisinal mine 0.682 0.841
agriculture 0.722 0.94
habitation 0.6 0.784
water 0.62 0.854
road 0.652 0.918
slash burn 0 0

only a subset of the test F2 scores are evaluated before the
end of the competition.

Once the network has been fully trained, we can evaluate
the mean F2 score for the validation and test sets. The test
set consists of 40,479 images, and the labels we compute on
the test set are used to evaluate our model’s performance on
Kaggle’s leaderboard via the F2 score. Our final F2 scores
of the test set (0.91918) placed us within the top 100 for the
competition.

6. Conclusions
In the end, the right sized network was the key to our suc-

cess in this challenge. We learned that the famous architec-
tures like ResNet and VGG were too complex or too deep
to train accurately. In testing simple convolutional neural
networks and progressively adding convolutional layers we
were able to outperform other pretrained architectures.

Looking into the why of how each network worked or
failed was extremely insightful in confirming our beliefs of
how to make the models perform better as well as give us
confidence that a well-trained network was looking in the
right spots. The key to qualitatively confirming our tests
and results were the visualizations of the labels’ heatmaps
and saliency maps. While these visualizations guided us
in the broad sense toward what network structures worked
best, fine tuning the network in search of a better F2 in-
volved diving into a lot of hyperparameter optimization and
the exploration of static thresholds and per-class thresholds.

6.1. Future Work

Optimizing over the F2 loss for logistic regression, as
per [6], is something to pursue in the future given more
resources. Implementation is non trivial, but particularly

7



suited for this project, as well as any other single-label or
multi-label classification problems that require maximizing
precision or recall with a quantitative bias.

6.1.1 Other Architectures

The architecture we used was a relatively simple feed-
forward network that tried to predict all labels in one shot.
More successful architectures might be to train a full net-
work solely as a binary classifier for each label. This al-
lows the network to solely focus its learnable parameters on
one particular feature set and forgo the issues of looking for
fine-grained and wide-scale features at the same time.

Another method we could try is to have combine the top
layers of these individual architectures and have them split
apart into their own branch networks after a couple con-
volutional layers following the input. Its possible that this
achieves similar results to our network if branched too close
to the output. The branched networks would simply learn
the particular lower-rank representations of our lower lay-
ers since the upper-level feature detectors remain the same.
An adequate amount of cross-validation would be needed
to determine how best to split and combine these unique
feature detector networks for each label.

References
[1] A. Albert, J. Kaur, and M. Gonzalez. Using convolu-

tional networks and satellite imagery to identify patterns
in urban environments at a large scale. arXiv preprint
arXiv:1704.02965, 2017.

[2] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learn-
ing multi-label scene classification. Pattern recognition,
37(9):1757–1771, 2004.

[3] M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva.
Land use classification in remote sensing images by convo-
lutional neural networks. arXiv preprint arXiv:1508.00092,
2015.

[4] F. Chollet. Keras. https://github.com/fchollet/
keras, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[6] M. Jansche. Maximum expected f-measure training of lo-
gistic regression models. In Proceedings of the conference
on Human Language Technology and Empirical Methods in
Natural Language Processing, pages 692–699. Association
for Computational Linguistics, 2005.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[8] R. Kotikalapudi. Keras visualization toolkit. https://
github.com/raghakot/keras-vis, 2017.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages
1097–1105, 2012.

[10] M. Lenormand, M. Picornell, O. G. Cantú-Ros,
T. Louail, R. Herranz, M. Barthelemy, E. Frı́as-Martı́nez,
M. San Miguel, and J. J. Ramasco. Comparing and mod-
elling land use organization in cities. Royal Society open
science, 2(12):150449, 2015.

[11] Q. Liu, R. Hang, H. Song, and Z. Li. Learning multi-scale
deep features for high-resolution satellite image classifica-
tion. arXiv preprint arXiv:1611.03591, 2016.

[12] S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE Transactions on knowledge and data engineering,
22(10):1345–1359, 2010.

[13] Planet.
[14] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell,

D. Parikh, and D. Batra. Grad-cam: Why did you say that?
arXiv preprint arXiv:1611.07450, 2016.

[15] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2818–2826, 2016.

[17] J. L. Toole, M. Ulm, M. C. González, and D. Bauer. Inferring
land use from mobile phone activity. In Proceedings of the
ACM SIGKDD international workshop on urban computing,
pages 1–8. ACM, 2012.

[18] G. Tuatini. planet-amazon-deforestation.
https://github.com/EKami/
planet-amazon-deforestation, 2017.

[19] N. K. Uba. Land Use and Land Cover Classification Using
Deep Learning Techniques. PhD thesis, Arizona State Uni-
versity, 2016.

[20] M. Vakalopoulou, K. Karantzalos, N. Komodakis, and
N. Paragios. Building detection in very high resolution mul-
tispectral data with deep learning features. In Geoscience
and Remote Sensing Symposium (IGARSS), 2015 IEEE In-
ternational, pages 1873–1876. IEEE, 2015.

[21] Y. Yang and S. Newsam. Bag-of-visual-words and spatial
extensions for land-use classification. In Proceedings of
the 18th SIGSPATIAL international conference on advances
in geographic information systems, pages 270–279. ACM,
2010.

8

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/raghakot/keras-vis
https://github.com/raghakot/keras-vis
https://github.com/EKami/planet-amazon-deforestation
https://github.com/EKami/planet-amazon-deforestation

