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Abstract

Amazon satellite image data, provided by Kaggle, con-
tains image classification results with in total 17 classes.
Different from simple multi-class classification problems,
here one image contains complicated features and thus can
belong to multiple classes. In this project, we train the clas-
sifier using three different algorithms: (1) using multi-class
Support Vector Machine (SVM) as the baseline, (2) deep
learning using Convolutional Neural Network (CNN), and
(3) transfer learning using VGG-16. We explain these al-
gorithms in detail, and show the accuracies as well as F2

scores obtained from the three algorithms. We further high-
light a validation F2 score of 0.9177 with VGG-16 and pa-
rameter fine tuning.

1. Introduction

The understanding of natural landmarks and human foot-
prints of Amazon is of great importance for the preservation
of the forest and habitat of Amazon. It will help us to find
the source of deforestation and further provide us with in-
formation to make response. Such understanding requires
not only the knowledge of the nature itself, but also the al-
location of natural resources and the effects of human activ-
ities.

Previous research typically uses coarse resolution im-
ages to study changes in rainforest, which is not enough
for small-scale deforestation. Now we are provided with
a high resolution dataset of the whole Amazon landform
from the satellite thanks to Planet [1], who collects Ama-
zon land surface imagery with the world’s largest constella-
tion of Earth-imaging satellites. It is useful to classify the
different regions of Amazon with correct labels.

This is a subset of the general classification problem,
which has been massively discussed in the context of not
only image processing [4], but also machine learning and
even deep learning [6, 8]. Methods either suitable for gen-
eral classification problems such as Support Vector Ma-

chine (SVM), or specifically designed for image related
problems such as Convolutional Neural Network (CNN),
can be employed directly. However, different from the tra-
ditional binary classification problem, here one image from
the satellite can belong to multiple classes. Therefore, to
correctly classify each image becomes challenging.

In our project, we implement three algorithms to tackle
this problem: (1) a simple SVM classifier as the baseline,
(2) using a commonly used CNN structure and (3) trans-
fer learning combining pretrained VGG-16 [7] and CNN.
The report is thus organized as a follows. We present some
related work in Section. 2. In Section. 3, we discuss the
dataset provided by Kaggle. In Section. 4, the three algo-
rithms are discussed in detail. We show the results using
the three algorithms in Section. 5. Section. 6 summarizes
the results and points to future improvements.

2. Related Work

Multi-label classification problem is important in many
research fields and has been discussed widely in the liter-
ature. For example in the field of bioinformatics, various
state-of-the-art classification methods have been used on
gene expression datasets in order to correctly classify tis-
sues [5]. In addition to the field of geography, multi-class
SVMs has been adopted to classify the airborne sensor data,
in conjunction with a few other methods such as discrimi-
nant analysis, decision tree, and multilayer perceptron neu-
ral network [3].

In addition to traditional multi-label classification meth-
ods, recent advances in deep learning give rise to the pre-
vailing application of deep neural networks. For example,
people have built flexible deep CNN infrastructure, called
Hypotheses-CNN-Pooling (HCP) to obtain much better im-
proved classification accuracy [10]. Moreover, more algo-
rithms such as combining SVM with deep learning [9] and
deep learning for large-scale data [2] were also proposed in
the past few years.
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3. Dataset
The dataset provided by Kaggle [1] is of in total 17

classes, and these classes address different aspects of the
image content, for example landscape, weather and habita-
tion. In Fig. 1 we show a few examples of the images in the
dataset. Each image is of size 256× 256× 3, and is labeled
with one or many classes. In order to feed the data to SVM,
we first binarize the classes.

Figure 1. A few examples of the data. Each image is labeled with
one or many classes.

In the dataset, the labels are not evenly distributed. We
show the distribution of labels in Fig. 2. For example, the
classes “blow down” and “conventional mine” have much
lower data compared to the classes “primary” and “clear”.
The imbalance of the data results in further difficulties in the
classification. Ideally, in dealing with classes where the data
are not evenly distributed, it would be better to introduce
weights for different classes in training a classifier. Here
in our report, we did not implement this extension and will
mention it in the future work.

Figure 2. Distribution of labels.

We split the total 40479 images into training dataset
(80%) and validation dataset (20%), and report the accu-
racies and F2 scores in the validation dataset.

4. Algorithms

In this section, we discuss the details of the three
algorithms implemented for the classification problem:
support vector machine, convolutional neural network and
transfer learning with VGG-16.

1. Support Vector Machine

Figure 3. Pipline of the data reprocessing and model training.
Each image is resized from its original size 256 × 256 × 3 to
32 × 32 × 3, and vectorized to a vector with length 3027. In the
naive SVM implementation (method 1), the resulting vector is the
input X . In the SVM with features (method 2), the color histogram
and hog features are concatenated to be X . The label of an image
is vectorized to a 17×1 vector, with −1 and 1 indicators indicating
the class that the image belongs to.

Fig. 3 shows the pipeline of SVM. To reduce the com-
putational cost, we first resize each image to size 32 × 32
and subtract the mean image. We also implemented two
methods: method 1 is to use the RGB values directly as the
input X , and method 2 is to use the color histogram and
hog features as X . For the class labels, we binarize it to
a vector with dimension 17 × 1. For example, since the
supported classes are haze, primary, agriculture, clear,
water, habitation, road, cultivation, slash burn, cloudy,
partly cloudy, conventional mine, bare ground, artisi-
nal mine, blooming, selective logging, blow down. The
label first image in Fig. 1 thus can be expressed by a vector
with the first and second value being 1 and rest being −1.
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L =
1

N

N∑
i=1

C∑
j=1

max(0, 1−yijxiwj)+λ||W ||2, yij ∈ {−1, 1}

(1)

To obtain the model, one can either train the SVM on
the 17 classes independently, or train all the classes simul-
taneously. Here we implemented both ways. For the first
case, we directly employ the SVM code from assignment1
and adjust the loss function to our case as in Eq.1, and for
the second method we use the multi-class SVM in package
sklearn. In principle, these two methods should give
the same results since both of them assume no correlation
between different classes.

2. Convolutional Neural Network

We implemented a convolutional neural network with
smaller capacity than the VGG-16 that will be discussed
in the next section. We used eleven convolutional or fully
connected layers in total. For faster computation, we first
resized our input images to 32 × 32 × 3. We also sub-
tracted the mean image to ensure zero center. In Fig. 4,
we show a flowchart of our architecture in sequence. In
detail, as shown in Fig. 5, we have a 32 × 32 × 3 input
image, two CONV3-32 layers, a MAX POOL2 layer, two
CONV3-64 layers, a MAX POOL2 layer, two CONV3-128
layers, a MAX POOL2 layer, a CONV3-256 layer, a MAX
POOL2 layer, a CONV3-512 layer, a MAX POOL2 layer,
a FC512 layer, a FC256 layer and a FC17 layer for final
classification. We used ReLu activation function for each
layer. To improve gradient flow, we used batch normaliza-
tion. For regularization, we used dropout with rate 0.5. We
used Adam optimizer for gradient update.

Figure 4. Convolutional neural network. Each image is resized
from its original size 256 × 256 × 3 to 32 × 32 × 3. Then mul-
tiple commonly used CNN layers are stacked to extract features
from the resized image. Finally the model has two fully connected
layers and a sigmoid layer to output class labels.

In the end, we used a sigmoid cross entropy loss func-
tion, as given by:

Figure 5. Convolutional neural network architecture. Eleven con-
volutional or fully connected layers are used in total. We use ReLu
activation function, batch normalization and dropout for each con-
volutional or fully connected layers.

L = − 1

N

N∑
i=1

C∑
j=1

yij logσ(sij) + (1− yij)log(1− σ(sij))

(2)
where σ(sij) is the sigmoid function, N is the number

of images and C is the number of classes.

3. Transfer Learning with VGG-16

Transfer learning is a method in machine learning that fo-
cuses on storing knowledge gained while solving one prob-
lem and applying it to a different but related problem. Here
to fully utilize the power of existing well-known models,
we implemented transfer learning with VGG-16 with its ar-
chitecture shown in Fig. 7. VGG-16 has larger capacity and
more parameters than the convolutional neural network im-
plemented in the algorithm discussed above. Its architecture
is shown in Fig. 6. Here to fit our needs, we modify the last

3



fully-connected layer to be dimension 1× 1× 17.

Figure 6. The architecture of VGG-16.

Because of the complexity of the model, the training pro-
cess takes longer time but could result in higher accuracy.
Also, the input images of VGG-16 need to be the size of
224× 224× 3 to accommodate the input layer of VGG-16.

Figure 7. Transfer learning with VGG-16. The images are resized
to 224 × 224 × 3 for the purpose of using pretrained VGG-16
model. Then we directly use the weights from VGG-16 and com-
pute the label for our images.

First, we preprocessed the input images. During training,
we cropped the input images to 224 × 224 × 3 randomly.
We also randomly flipped images left to right. Then to cen-
ter our images, each image subtracted the mean image of
VGG-16. During validation, we centrally cropped the input
images to 224×224×3 and also subtracted the mean image
of VGG-16.

Next, we restored only the layers up to FC7 with pre-
trained weights of VGG-16. We initialized operation from
scratch for the new FC8 layer with 17 output classes. We
used a sigmoid cross entropy loss function, as explicitly
given in Eq. 2. Finally, we trained only the reinitialized
last layer FC8 for five epochs, and then we fine-tuned the
entire VGG-16 net for another five epochs. Note that we
could continue to run for more epochs to further improve
our model training and validation accuracy and F2 score.
But due to the slow training process, we ran for five plus
five epochs here.

5. Results
In this section, we discuss the results obtained using the

above three algorithms. In addition to accuracy, another im-
portant feature to characterize effectiveness of the classifier
is the F2 score. In general, the F score measures accuracy
using the precision p and recall r, defined as

(1 + β2)
pr

β2p+ r
(3)

where p is ratio of true positives (tp) to all predicted pos-
itives (tp + fp), r is the ratio of tp to all actual positives
(tp+ fn):

p =
tp

tp+ fp
(4)

r =
tp

tp+ fn
(5)

For the F2 score, we have β = 2. Therefore, the mean F2

score is then the average of individual F2 scores for each
row in the dataset. Note that the F2 score weighs recall
higher than precision.

5.1. Baseline: SVM

In Table 1, we show the validation accuracy as well as the
average F2 score. The validation accuracy increases slightly
with extracted features.

validation F2 score
binary SVM 0.3365 0.6465

binary SVM (features) 0.3491 0.6770

Table 1. Validation accuracy with all labels being classified cor-
rectly, and the average F2 score for the validation dataset.

Figure 8. Visualization of learned weights for each class label.
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In Fig. 8, we visualize the weights for each class in the
obtained classifier. One thing to notice is that the weights
are mostly filled with noises due to the relatively low ac-
curacy. However, the color of the weights indicate some
aspect of the class. For example “cloudy” is slightly darker
than “partly cloudy”.
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Figure 9. Distribution of number of wrong labels for the validation
dataset with binary SVM.

In Fig. 9, we show the distribution of number of wrong
labels for the validation dataset predicted by the binary
SVM. We find that the number of wrong labels among all 17
labels is mostly smaller than 6, indicating an already good
performance of the classifier.

5.2. Convolutional neural network

Using the “light-weight” convolutional neural network
results in the following validation accuracies and F2 score

validation F2 score
CNN 0.4134 0.8520

Table 2. Validation accuracy with all labels being classified cor-
rectly, and the average F2 score for the validation dataset.

Note that we are using the F2 score to evaluate our model
here. And the F2 score is known to weigh recall higher than
precision. Therefore, in order to improve the F2 score, we
lowered the classification threshold after the sigmoid func-
tion. We tuned the threshold value in the range of 0 to 0.5
to find the optimal threshold value 0.2. Here, we used the
same threshold 0.2 across all classes.

Comparing to the SVM model, we directly observe the
increase of both accuracy and the F2 score. In fact, these
are due to the complications of the CNN model, where the
boundaries between each class becomes significantly non-
linear. To better assess the model, we start with a noisy
image and let the image evolve by setting the target class as
one of the 17 classes, we obtain the following visualization
of class labels.

Figure 10. Class label visualization using CNN.

Comparing to the weights obtained using SVM, here
we can clearly see some features that are unique to some
classes. For example, “cloudy“ is more uniform in color
compared to “partly cloudy”, and one can directly see the
shape of rivers in the class of “water”. We note that us-
ing saliency map will achieve similar results, and these ex-
tracted features are the reasons for a higher accuracy and F2

score.

5.3. Transfer learning with VGG-16

In combination with VGG-16, we obtain the accuracy
and the mean F2 score for the validation dataset as the fol-
lowing.

validation F2 score
CNN with VGG-16 0.5488 0.9177

Table 3. Validation accuracy with all labels being classified cor-
rectly, and the average F2 score for the validation dataset.

Here we see a further increase in both validation accu-
racy and the F2 score, and this F2 score is within the top
80 scores in Kaggle leaderboard. In order to examine the
reason of such increase, we show the accuracies for each
individual class in Fig. 11.

For those rare classes, the classification accuracies are
high enough even using SVM. However, for classes that
are prevailing in the dataset, their accuracies start with low
values in SVM and thus will be the bottleneck for higher
accuracy and F2 score. By switching the model to CNN,
we directly observe the increase of accuracy in these ma-
jor classes, and finally using transfer learning, these accu-
racies are further boosted without any significant change in
accuracies for the rare classes. Therefore, using a compli-
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Figure 11. The validation accuracies by class for the three algo-
rithms discussed above.

cated model really can help better classifying the classes
with large amount of data, and hence improve the overall
validation accuracy and the F2 score.

For better comparison purpose, we summarize our main
results in Fig. 12. We want to highlight the increase of the
total accuracy and the F2 score as the model gets more so-
phisticated.

Figure 12. A summary of the total validation accuracies and F2

scores for the three algorithms discussed above.

6. Conclusion and future work

In this project, we target at a multi-label classification
problem where Amazon images obtained from satellite be-
long to in total 17 classes, and each image can have one or
many labels. We tried three methods to train a classifier: us-
ing a standard SVM and adjusting it for multi-classification,
and using simple CNN architecture for label prediction and
using a more complicated transfer learning model with pre-
trained VGG-16. We present in detail the results from the
three algorithms. Results from SVM, as the baseline of the
project, can already achieve high classification accuracy and

F2 score. With deep learning approach from CNN to trans-
fer learning, we further observe significantly increasing val-
idation accuracy and the F2 score. We analyze the reason
for such increase, and highlight the best F2 score with a
value of 0.9177 using transfer learning with VGG-16.

For future work, a few improvements can be made by
transfer learning with more sophisticated models, such as
ResNet and InceptionNet. Moreover, one can do ensemble
algorithm by taking advantages of existing pretrained mod-
els to obtain even higher F2 scores. However, the method
is essentially the same as introduced in our report. An-
other possible direction for future improvement is to solve
the problem of data imbalance. This can be either done by
augmenting the classes with few occurrences in the overall
dataset, or introducing weights in the loss function defined
in Eq. 2. In addition, we can also tune the threshold for
classification after the sigmoid function for each class indi-
vidually to further improve the F2 score, since the F2 score
weighs recall higher than precision.

We would like to thank the TA for useful discussions of
our project.
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