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Abstract

Deforestation, especially in the Amazon basin, con-
tributes to biodiversity loss, climate change, and a host of
other negative effects. Local stakeholders and law enforce-
ment agents need robust software solutions to identify the
cause of deforestations. This is part of an ongoing Kaggle
competition, where the task is to do a multi-label classifica-
tion over satellite images and the labels are various atmo-
spheric and land conditions. A single fully retrained ResNet
model achieved a F2 score of 92.25%, while the ensemble
of 13 ResNet models achieved a F2 score of 92.806% (rank
38 out of 430+).

1. Introduction
Deforestation, especially illegal deforestation, con-

tributes to global warming, habitat loss, and a host of other
problems. The action to take depends on the cause of the
deforestations. Given the size and scope of the Amazon
rain forest, we need an automated system to quickly iden-
tify whether there is a deforestation and what causes it, so
that the stakeholders can respond more quickly and effec-
tively. The first step towards this goal is to do a multi-label
classification on Amazon satellite images, where the labels
are various atmospheric (e.g clear or cloudy) and land con-
ditions (e.g agriculture or water). There are 17 labels in
total and the metric to maximize is the F2 score, which is
a harmonic mean of precision and recall with more empha-
sis on recall. This is part of an ongoing Kaggle compe-
tition hosted by Planet (https://www.kaggle.com/c/planet-
understanding-the-amazon-from-space).

Our goal is to predict all of the applicable labels for the
image, i.e. given an image in format of JPG [256 x 236 x
3], or GeoTiff [256 x 256 x 4], predict a binary vector of
length 17, with each vector cell corresponding to one of the
17 possible tags (labels). To solve this problem, we will
explore various image classification techniques and archi-
tectures. We first try a simple multi-layer perceptron and
ConvNet. We also explore architectures from past winners
of the ImageNet challenge [1] such as ResNet [2] and Incep-

tion [3], since this Kaggle challenge is also a image classi-
fication challenge similar to ImageNet. The results can be
seen in section 5.

2. Related Work
ImageNet is the most popular image classification

dataset and has been used as a benchmark of new image
classification architectures and techniques. There has been
a lot of work on building image classification systems for
ImageNet. The first model to use Convolutional Neural
Network (CNN) is AlexNet [4], which won the ImageNet
challenge in 2012. Hardware limitations at that time forced
AlexNet to split the model on to two devices because the
full model does not fit into a single GPU. Moreover, it was
not a particularly deep network ( 7 layers) because advanced
techniques for training deep neural networks did not yet ex-
ist.

Since then, hardware advances and training techniques
such as spatial batch normalization and bottleneck layers
have allowed researchers to train deeper, more effective
CNN architectures. ResNet [2] introduced residual network
to help training a very deep neural network, which was
150 layers. Alternatively, GoogleNet/Inception [3] used a
Network-in-Network model introduced the inception mod-
ule, where it concatenate the outputs of multiple convolu-
tions with different filter sizes. GoogleNet, too, was a very
deep and effective network. While many network focus on
deeper structure, DenseNet, [5], on the other hand, intro-
duced an alternative approach of connecting all layers to
its subsequent layers. Such structure not only alleviates the
vanishing-gradient problem and strengthen feature propa-
gation, but also reduces the number of training parameters.

Satellite image classification has been researched and ex-
perimented extensively as well, including both rule based
[6] and many machine learning based. Non-neural network
methods includes Markov random field model [7], which
exploits both spatial class dependency between neighbor-
ing pixels in an image and temporal class dependencies be-
tween different images of the same scene. The temporal in-
formation is especially useful for detection of class changes
over time. Another similar work is the detection of oil spills
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Figure 1. Example of Amazon satellite image.

in satellite radar images [8] using 1-NN and C4.5 [9], a de-
cision tree algorithm with information entropy.

On the neural network side, Chen, et al. [10] used a hy-
brid deep neural network (HDNN) to detect vehicle in satel-
lite images of San Francisco. HDNN works by splitting the
last layer into multiple blocks to extract variable-scale fea-
tures. Tang, et al. [11] used DNN and Extreme Learning
Machine (ELM) to detect ships in airborne optical images.
It works well but the limitation comes from the dataset it-
self, where the resolution is too coarse to be able to detect
smaller ship. Jean, et al. [12] used CNN and transfer learn-
ing to predict poverty levels based on daytime satellite im-
agery. The limitation is also on the resolution of the images,
which always seems to be an issue with satellite images, but
soon Planet.com will be collecting daily imagery of the en-
tire surface of earth at 3-5 resolution, which will be helpful
for all image classification tasks that use satellite images.
There are also previous work incorporates satellite image
feature extraction. Basu, et al. [13] , presents two new
satellite datasets called SAT-4 and SAT-6, and then proposes
a classification procedure of unsupervised feature extrac-
tion followed by supervised Deep Belief Network. Other
than supervised and semi-supervised learning, Baraldi, et
al. [14] introduced unsupervised clustering artifical neural
network for satellite image classification.

There have been many efforts in machine learning used
to overcome skewed datasets. Some examples of note in-
clude tuning the base learning towards the minority class
according to the distribution. B. Zadrozny, et al. [15] in-
troduced a method of estimating the unknown distribution
of classes using decision tree and naive Bayesian learning
method and obtaining unbiased estimator for example de-

pendent cost. Others also considered giving higher costs
for the misclassification of examples of minority class(es)
with respect to majority class(es), and therefore, trying to
minimize higher cost errors [16, 17]. Another direction is
to oversample minority classes. One particular technique
of note is SMOTE, or Synthetic Minority Over-sampling
Technique, which aims to unskew a dataset by generating
fake data [18]. It’s performed by taking a minority example
and its nearest neighbor, and generating a linear combina-
tion of the two in any dimensional space. This technique has
been shown to combat overfitting the majority examples in
a classifier.

3. Dataset and Features

The training set contains 40,479 images and the test set
contains 40,669 images. Each image contains 256 x 256
pixels and encoded with two methods: JPG [256 x 236 x
3], or GeoTiff [256 x 256 x 4]. While JPG only has RGB,
GeoTiff includes a near-infrared (NIR) channel. An exam-
ple of the image can be seen in Figure 1. The data is labeled
by crowd workers so there might be some human error in
the data. We have isolated 10% of the training set (the last
5479 images) as validation set. Right now, only 2/3 of the
test set is graded in the public leaderboard and the rest will
be graded after the competition ends (2 months from now).

This dataset is very skewed towards certain classes, as
seen in Figure 2. As a result, we have very strong initial
results immediately, an F2 score of 0.88 with a two-layer
CNN model.
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Figure 2. Train data labels histogram

3.1. Labels

Each image has at least one atmospheric label from the
set (’clear’, ’haze’, ’partly cloudy’, ’cloudy’). Additionally,
a label can optionally have one or more rare labels such
as ’blooming,’ which signifies massive 30+ foot diameter
trees, or ’artisinal mine’ which represents an illegal mining
operation, usually near a river. The full set of labels is listed
in Figure 2.

4. Methods

4.0.1 Prediction Layer and Loss Function

Since this is a multi-label classification problem, the com-
monly used softmax prediction is not ideal in our case. In-
stead, we used sigmoid function (σ(x) = 1

1+e−x ) for pre-
diction and the binary cross entropy function for loss. Sig-
moid normalizes the input data to range of (0, 1), which
models the probability of the class label being applicable to
the image. For prediction, we use thresholds that gives the
highest validation F2 score and each class label has its own
threshold.

We predict a class tag as applicable to the image if the
model gives a probability measure greater than the threshold
for that particular class. We perform an exhaustive search
over thresholds after training the model.

We used weighted binary cross entropy loss as our opti-

mization loss function defined as

H(y, y′) = −
∑
i

wi(yi log y
′ + (1− yi) log(1− y′))

where y is the truth label, y′ is the output probability for
each class label from the model, and wi is the class weight.
The less frequent class will have higher weight, so that there
is more incentive to get the prediction right for the rarer
classes. The class weight is defined as:

wi =
N

C
∑N

j=1 1{yj = i}

where N is the number of samples and C is the number of
classes.

Since this is a multi-label classification problem with 17
labels, each label has two classes (True and False). Thus,
we also tried a loss function with 34 weights defined as:

H(y, y′) = −
∑
i

wpiyi log y
′ + wni(1− yi) log(1− y′)

wherewpi is the weight for positive class for label i andwni

is the weight for negative class for label i.

wpi =
N

2
∑N

j=1 1{yji = 1}
wni =

N

2
∑N

j=1 1{yji = 0}
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4.1. Optimizer

Our input data is high in dimension(256 × 256 × 3 or
256× 256× 4). Each dimension may have a different gra-
dient magnitude, thus we choose to use Adam or Adadelta
optimizer which adjusts the effective learning rate in each
dimension adaptively.

4.2. Measurement Metrics

We incorporate two measurement metrics, accuracy and
F2 score. For this multi label classification problem, accu-
racy is defined as

accuracy = mean(1{yij = y′ij})
where yij is the true binary label for example i class j

and y′ij is the predicted binary label for example i class j.
F2 is a weighted harmonic mean of precision and recall:

F2 = 5 ∗ Precision ∗Recall
4 ∗ Precision+Recall

4.3. Neural Network Structures

4.3.1 MLP Model

We first tested with a MLP model with two layers of dense
(a.k.a fully connected) layers:

FC(1024)→ Relu→ Drop(0.5)→ FC(17)

4.3.2 Baseline/ConvNet Model

Our baseline model is a multi layer convolution neural net-
work with the following structure:

Conv3-32→ Conv3-32→ Relu→ max-pool2→

[Conv3-32→ Relu→ max-pool2]× 2→ Drop(0.5)→
FC(1024)→ Relu→ Drop(0.5)→ FC(17)

Conv3-32 means a convolution layer with 32 (3× 3) fil-
ters. max-pool2 means a max pooling layer with pooling
size of (2× 2).

4.3.3 Transfer Learning

ResNet and Inception are performing well in capturing im-
age features for classification on ImageNet. Thus, we built
a transfer learning model with the pretrained ResNet and In-
ception weights. Since our classification label sets are dif-
ferent from the ImageNet challenge. We excluded the fully
connected (dense) layers from the pretrained model and in-
stead added two non-pretrained fully connected (dense) lay-
ers:

pretrained ResNet50/InceptionV3 excludes dense layers

FC(1024)→ Relu→ Drop(0.5)→ FC(17)

4.3.4 Full Retrain

In addition to transfer learning, we also tried to train the full
ResNet50 and DenseNet [5], with the dense layers replaced
with the ones in transfer learning. We used [19] for the
DenseNet implementation. It turns out the full retain with
ResNet50 out performs all other models.

4.4. Exponential Moving Average

In addition to the traditional weights update by back-
propagation, we also used the weights update with exponen-
tial moving average. I.e. the weights (hidden parameters)
are updated as:

w′
t+1 =

∂Loss

∂w

wt+1 = (1− δ)wt + δ ∗ w′
t+1

The implementation is based on [20].

4.5. Optimal Threshold Selection

Different from single label classification problem where
only the label with highest score is selected as prediction,
our problem is to select all labels applicable to the image.
Thus we used a different strategy of sigmoid activation at
the final prediction layer. At training time, we used naive
probability cut of 0.5 as the activation threshold. However,
the model may have different optimal threshold for each
class. Thus we used the validation set to find the threshold
for each class that results in best F2 score. The implemen-
tation is based on [21].

4.6. Ensembles

Another strategy to improve our F2 score is to ensemble
multiple models together. We tried both averaging and ma-
jority vote ensemble strategy on 13 fully trained ResNet50.

4.6.1 Averaging

The average method is to compute the mean of predicted
sigmoid values from all models in each class and use these
mean values as the final prediction scores. Then we used
the strategy mentioned above to find the best thresholds for
the mean sigmoid scores for each label class.

4.6.2 Majority vote

The majority vote method is to have each model finds its
own best threshold on each class and make prediction with
its best thresholds. Then we count how many models have
selected a particular label class. If more than half of models
select the label, we predict the final result of this label as
selected.
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Table 1. Models’ performance on the validation and test set.

Model Val F2 (%) Test F2 (%)
Naive 64.6 N/A
MLP 64.6 N/A

DenseNet 66.98 N/A
ConvNet 88 88

InceptionV3 Transfer 88 N/A
ResNet Transfer 90.4 90.6

ResNet (single model) 92.6 92.25
ResNet (ensemble) 93.03 92.806

4.7. Data Augmentation

We feared that a skewed dataset would lead to over fit-
ting and prevent good model performance. We tried two
different approaches for data augmentation: 90-degree im-
age rotation, as well as using Keras’s preprocessing library,
ImageDataGenerator.

We used skimage to do an in-memory rotation of image
tensors. We alternated training batches on un-rotated or im-
ages randomly rotated 90-, 180-, or 270- degrees at a time.
This caused a bump in f2 score, which we will discuss in
later sections.

We experimented with Keras’ image pre-processing
package, which is a more comprehensive library for image
augmentation. We used it to apply affine transformations to
the images, such as rotation, scaling, shearing, and trans-
lation. However, we did not see any noticeable increase in
performance relative to image rotation, and we guessed this
was largely due to hyperparameter selection.

5. Experiments, Results, and tsoDiscussion
5.1. Implementation and Tuning

We implemented the models using Keras [22] with Ten-
sorflow [23] backend. We used [24] as the base code for
this project. For ResNet, we used Adadelta optimizer with
a learning rate of 0.5 and decay of 0.002. For DenseNet,
we used Adadelta with a learning rate of 0.5 and decay of
0.001. For the other models, we used Adam optimizer [25]
with a learning rate of 0.001 and decay of 0.001. We used
mini-batch size of 32. Additionally, we used dropout to reg-
ularize our fully-connected layers.

5.2. Results

The validation and test F2 scores for the models that
we have tried can be seen in Table 1. As of 06/12/2017,
we got rank 38 out of 430+ teams. Top of leaderboard is
at 93.334% F2. Ensembled ResNet performs the best on
this image classification task. Ensembling with averaging
method out performs majority vote. Dataset augmentation
by rotation helped to increase the F2 score by 0.2%.

Table 2. Per label F2 using ResNet (ensemble).
Label Val F2 (%)

primary 99.15
clear 97.69

partly cloudy 94.2
agriculture 90.4

cloudy 87.64
road 86.63

artisinal mine 85.71
water 85.53
haze 79.07

habitation 78.49
cultivation 68.56

conventional mine 46.51
bare ground 42.96

selective logging 29.41
blooming 19.89
slash burn 3.16
blow down 0

5.2.1 Error Analysis

In order to have better insight of the error distribution, we
also checked the performance on each class. Table 2 is a
breakdown of per class F2 score on validation set for the
ensembled ResNet model. As we expected, the primary
label (most prevalent label in the dataset) get very high
(99.15) F2 score, while labels with very small population
(e.g. slash burn, blow down) in the data set get very low or
even zero F2 score.

In addition, we also found that the original labels on the
data set have some noise that affected the F2 score. An
example of such noise can be seen in Figure 3. On the left
image we can see that it’s clear, with a little bit of forest on
the bottom left and the rest is water, but somehow the actual
label for the image is cloudy.

The saliency maps of some validation images can be seen
in Figure 4. Although the maps are not perfect, they some-
how correspond to the labels they represent. The water’s
saliency map is focused on top left since the water location
is on top left and clear’s and cloudy’s saliency map are all
over the images since cloudy is an atmospheric label.

The confusion matrices for 3 labels (out of 17) can be
seen in Figure 5, 6, and 7. The model performed well when
the distribution of True and False samples are balanced (e.g.
the clear label), but the model performed badly when the
distribution is imbalanced. Even after using the weighted
loss with 34 weights, for the blow down label, the model
just predicted False for every sample.
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Figure 3. Example of noise in the dataset.

Figure 4. Saliency maps of some validation images using ResNet single model.

5.3. Other Experiments

In addition to the experiments and models mentioned in
Methods section, we also tried various experiments below,
but they do not help much:

• Models were trained using JPG images, which does
not have the near infrared channel. An initial trial to
train a ConvNet model using GeoTiff images without
any preprocessing resulted in worse F2 score (0.676).

• Making the data to have zero-mean also did not help,
so we might need different ways of preprocessing

the GeoTiff images. We have also tried to compute
RGB values and normalized difference vegetative in-
dex (NVDI) value using spectral library, but the score
is still lower than the score using JPG images. The
problem with the GeoTiff images is that they are not
corrected for sun angle and distance.

• We have also tried using exponential moving average
of ResNet’s parameters during prediction but that also
did not to increase the F2 score.
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Figure 5. Confusion matrix for the ”primary” label using ResNet
ensemble.

Figure 6. Confusion matrix for the ”clear” label using ResNet en-
semble.

6. Conclusion and Future Work

Model architectures that were successful for ImageNet
task performed very well on this multi-label classification
task on Amazon satellite images. A single fully retrained
ResNet model achieved a F2 score of 92.25%, while the
ensemble of 13 ResNet models achieved a F2 score of
92.806% (rank 38 out of 430+). We are very happy with
this outcome!

Because of the imbalance labels distribution, class with
high prevalence in the data set can easily get high F2 score

Figure 7. Confusion matrix for the ”blow down” label using
ResNet ensemble.

but rarer class suffers from getting the correct prediction. A
possible future work is to experiment with different loss and
weight functions.

Another direction of improvement is to generate more
augmented data, especially for rarer classes. For example,
we can generate some down sampled image, blur the im-
age, concatenate and resize two images (and their labels)
into one training example. Moreover, we could follow the
SMOTE pattern and linearly combine different minority ex-
amples with nearby neighbors. That way, we will make the
training set more balanced on each class label.

Finally, we believe that the desired evaluation metric is
not properly modeled by a cross-entropy loss, and think that
using a REINFORCE [26] algorithm could properly trade
off the loss between accuracy (immediate reinforcement)
and f2 score (delayed reinforcement). By using this style
of learning, we think that we could improve our outcomes.
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