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Abstract

The Amazon rainforest is a critical, yet highly threatened
South American natural resource. The size and density of
the forest make monitoring by land or low-air expensive and
intractable. Recent advancements in satellite imaging tech-
niques allow for rapid, high-resolution imaging of the entire
forest. However, hand-labeling and monitoring of these im-
ages would be exceptionally expensive and error-prone. We
present a deep convolutional neural network for labeling
images of the Amazon rainforest with both atmospheric and
terrestrial development labels. The model presented here
is custom-built to work with four-channel (red, green, blue,
near-infrared) images with a resolution of 3-5 meters per
pixel. We discuss the challenges of training such a model
and considerations for using the F2 metric as an accuracy
statistic. We find that our model achieves an accuracy, as
measured by the F2 metric, that is within five percent of
the performance of the top model in the Understanding the
Amazon from Space Kaggle competition.

1. Introduction
The Amazon rainforest is one of the planets most critical

natural resources. The rainforest is one of the most biodi-
verse land areas on the planet. However, human encroach-
ment on the forest threatens the habitat of many of the areas
plant and animal species. Due to the interconnectivity of
such an ecosystem, the effects of human development of
the forest could have catastrophic effects.

In response to over-development and habitat loss, many
of the surrounding nations have created special departments
that work to monitor and limit human encroachment. How-
ever, the sheer size of the forest makes monitoring develop-
ment from the ground or low-air intractable. One alterna-
tive to terrestrial surveillance techniques is observation by
satellite. Unfortunately, given the resolution and scale of
satellite imagery, hand-labeling features contained within
the images is unrealistic for any single point in time, let
alone for tracking development over time. Recently, the San

Francisco-based company Planet Labs, Inc., which special-
izes in satellite imagery, launched a competition to algo-
rithmically label satellite images with both atmospheric and
terrestrial conditions, including labels pertaining to human
activities such as mining and agriculture.

To overcome feasibility issues and efficiently label im-
ages on the fly, the Planet Labs team painstakingly labeled
a training and test dataset of 256 square pixel chips. The
training dataset was then released to the public for use in
development of algorithmic labeling techniques while the
test set was withheld for judging the techniques.

Successful algorithms correctly apply a single label for
the atmospheric condition and at least one terrestrial label
indicating the land utilization observed in the chip. By com-
pleting labeling computationally, the images of the rainfor-
est can be categorized in near real time, greatly facilitating
monitoring of human related activities. Because the con-
sequences of illicit land use in the Amazon are frequently
irreversible, rapid response is necessary to intervene prop-
erly and prevent the spread of development further into this
irreplaceable resource.

Here we present a deep convolutional neural network for
labeling images of the Amazon rainforest consistent with
the rules outline in the Kaggle competition run by Planet
Labs, Inc. Our model was constructed from the ground up
and trained using the provided training dataset. The inputs
to our model are 256x256 pixel, four channel images of the
Amazon rainforest and the outputs labels of atmospheric
and terrestrial conditions. Our model achieves an accuracy,
as measured by the F2 statistic, that is within five percent of
the top performing model in the competition.

2. Related work
With implications for national security [20], environ-

mental monitoring [18], and conservation [3, 6], image seg-
mentation and feature recognition in satellite images are
active areas of research. In particular, the need for clean
satellite imagery data suitable for training machine learning
algorithms is so great that two large-scale datasets have re-
cently been released [4]. Hopefully, datasets such as these
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will spur development in the satellite imagery field, in a
fashion similar the ImageNet dataset for object recognition
[5].

2.1. Training deep networks

Extending depth usually improves the representational
capacity of neural networks. However, as networks increase
in size, they inevitably become more difficult to train. To
address this problem, several strategies have been proposed.
The first of these strategies is to use an initialization scheme
that is congruent with an architecture of choice. Specifi-
cally, the initialized coefficients for all weights in the net-
work should scale in such a way that vanishing or explod-
ing signals are not propagated early in training. So-called
Xavier initialization provides such a scheme that can be
used with great success during the training of deep networks
[7]. A second strategy to facilitate training a deep network
is to implement residual layers. These layers serve to sim-
plify the complexity of training by forcing the network to
learn many smaller, simpler functions that accurately de-
scribe the residuals of an overarching function, instead of
the whole function directly [8]. In tandem, the use of both
Xavier initialization and residual layers represent a marked
advance in both the speed and accuracy of deep neural net-
works.

2.2. Object recognition in aerial images

Efforts on satellite and other aerial image recognition
tasks have already yielded dividends, with machine learn-
ing approaches able to recognize man-made features such
as buildings and roadways [1, 14]. In the case of recogniz-
ing development patterns in rainforest imagery, this previ-
ous work is reassuring in that it proves man-made structures
indicative of non-natural land use can be identified on an in-
dividual basis. To correctly label all the necessary images in
the Planet Labs dataset, we need to extend this work to cor-
rectly recognize more general development patterns such as
agriculture or mining.

2.3. Development pattern recognition

Beyond recognition of man-made structures and devel-
opment patterns, convolutional neural networks have seen
great success in the prediction of more abstract conse-
quences of human development. For instance, Jean and col-
leagues were recently able to adapt a ImageNet trained net-
work to accurately predict local poverty rates from satellite
images of Africa [10]. This work indicates that network ar-
chitectures, like those presented here, are capable of learn-
ing higher-order representations of the terrestrial develop-
ment state.

In addition, pretrained networks, such as those trained
on the ImageNet dataset have repeatedly demonstrated their
value for such tasks [10, 13]. These networks perform better

off the shelf, but tend not to incorporate the additional infor-
mation present for spectra outside visible light (red, green,
and blue channels).

Efforts have also been made to use deep convolutional
neural networks to perform unsupervised feature extraction
on satellite images [17]. These techniques, especially when
performed with very deep networks, have been shown to
outperform standard dimensionality reduction techniques
such as PCA. Generally, the representational capacity of
deep neural networks should be sufficient for the task of
labelling the Planet Labs dataset.

2.4. Non-visible light imaging

Unlike other recognition tasks that rely on three channel
images (red, green, and blue) many satellite images have
more channels, corresponding to non-visible parts of the
electromagnetic spectrum. These types of images are re-
ferred to as hyperspectral images, as they capture informa-
tion from many narrow spectral bands, many from outside
the visible light portion of the spectrum. These images have
many uses from uncovering ancient, abandoned settlements
[2] to mapping extent of seagrasses beneath the surface of
the ocean [16]. In these applications, spectral information
outside visible light is used to gather further information
about the imaged area. Specifically, infrared spectra can be
used to infer the density, age, and health of any vegetative
ground cover. In fact, information from the red and near-
infrared portions of the electromagnetic spectrum is enough
to estimate the amount of chlorophyll present in imaged
plants [15].

3. Dataset
Planet Labs, Inc. provided a training dataset for this

competition of 40,479 16-bit, 256x256 4-channel tiff files
(BGRN, for blue, green, red, and near-infrared). Unlike
many other image recognition tasks that rely only on the
visual red, green, and blue channels, the inclusion of the
fourth, near-infrared channel, is likely necessary for top
model performance. Vegetation, a key component of nearly
all of the images, strongly reflects near-infrared light. In-
deed the Normalized Difference Vegetation Index (NVDI),
which is commonly used in remote sensing applications to
determine the presence of green-vegetation, is defined as
the difference between the near-infrared and red channel
intensities divided by their sum. In contrast, most other
image features suggestive of human development, such as
roadways and buildings, tend to absorb light in the near-
infrared spectrum. Therefore, the near-infrared channel is
likely one of the most informative for labeling the images
in the dataset.

Each pixel in these images represents an area on Earths
surface of 3-5 square meters. Through a combination of
crowdsourcing and expert analysis, these images were an-
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Figure 1. Co-occurrence of atmospheric classes with terrestrial la-
bels. Given an image had a row class, each element gives the
probability that the image shares a corresponding column label.

notated with 17 tags, which indicate atmospheric conditions
(specifically, cloud cover) as well as terrestrial conditions
(e.g. mining, forestry, agriculture). These tags are assigned
in a hierarchical fashion, with each image being assigned
exactly one of 4 atmospheric classes and zero or more of 13
ground activity labels. In the case that an image is assigned
a class of cloudy, indicating heavy cloud cover, no ground
activity labels are applied.

Based on the annotation rules, there are 1 + 3(213) −
3 = 24574 possible tag combinations. However, only 430
(< 2%) are observed in the provided dataset. The clear at-
mospheric class is by far the most prevalent, while primary
(for primary growth rainforest) labels over 90% of images.
Both classes and labels exhibit a striking imbalance (Figure
2). Additionally, since each image can be tagged with more
than one label, many labels are highly correlated (Figure 1).
Imbalance and correlation within the labels in the dataset
can present major problems during training as the network
will observe some labels far more often than other labels.
These issues can be mitigated either a) on the model’s fron-
tend by upsampling examples with rare labels or b) on the
backend by weighting the loss higher for rare labels such
that larger gradients are backpropagated.

Given the relatively small size of the dataset, we decided
to perform basic data augmentation to increase the number
of examples (see Methods section).

4. Methods

4.1. Preprocessing and data augmentation

The 40,479 labeled images were split 90-10 into a train-
ing set of 36,431 examples and a validation set of 4,048
examples. For the training set, a per-channel mean and
standard deviation were calculated. Using this mean and
standard deviation, all images were normalized as they
were loaded into the model. During training, images
were augmented using random 90◦ rotations and reflections.
Whereas traditional images are usually oriented to align
with gravity, satellite images have no obvious natural ori-

Figure 2. Co-occurrence matrix for terrestrial labels in the training
dataset. Given an image had a row label, each element gives the
probability that the image shares the corresponding column label.

entation, so we would expect 90◦ rotations and reflections
to increase the effective dataset size 8-fold while not adding
significant noise.

4.2. Basic convolutional network

As a general architecture template, we used a stem of
several 2D-convolutional layers along with one strided 2D-
convolution to reduce spatial dimensionality, then classi-
fied the flattened output of the stem with two fully con-
nected layers to ultimately yield 17 score predictions which
were mapped to values (0,1) using a sigmoid. During train-
ing, these 17 pseudo-probabilities were compared to the
ground-truth labels via variations of a binary-cross entropy
(BCE) loss function (see sub-section 4.4). The model was
trained with the Adam optimizer [12] and a batch-size of
128. Weights were initialized with the Xavier-Glorot algo-
rithm [7], batch normalization [9] was applied after all fully
connected and standard convolutional layers, and inverted-
dropout [19] (0.2 probability of dropout) was applied to the
first fully connected layer. After an exploratory screen, we
found a high-performing architecture and hyperparameter
combination which is summarized in table 1 as model 008.
The full model architecture is shown in section 8.

4.3. Deep residual network

While the basic convolutional architecture performed
reasonably well, it struggled to overfit the training data.
Furthermore, the single strided convolution (which reduced
spatial dimensionality) did not cull the dimensionality of the
flattened representation significantly: of the 21M parame-
ters in the basic model, 99.8% were from the first fully con-
nected layer. Thus, we implemented a deep, higher-capacity
architecture with residual layers to ease model optimization
and two additional strided 2D-convolutions to further re-
duce dimensionality. Every residual layer (ResLayer) was
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composed of two 2D-convolutions, each with 2D-batch nor-
malization and ReLU activation. Following the batch nor-
malized output of the second convolution, the original input
to the ResLayer was added before the final ReLU activa-
tion (such that each ResLayer learned a residual relative to
its input). Overall, our deep residual network architecture
was similar to that of the basic convolutional network, ex-
cept the 2D-convolutions of the stem were replaced with
several ResLayers. To classify the flattened output of the
stem, two fully connected layers (including first layer 0.2
dropout) and BCE loss were used. With the reduced dimen-
sionality of the flattened representation, the model size de-
creased greatly from 21M to 1.55M parameters (with 84.7%
of the parameters in the first fully connected layer).

We initially trained the model with Adam, and observed
that the model was prone to overfitting. This model is
summarized as model 013 in table 1. Based on literature
[11, 21], we opted to retrain this architecture with stochas-
tic gradient descent with momentum and observed that the
model was less likely to overtrain. This model is summa-
rized as model 015 in table 1. The full model architecture is
shown in section 8.

4.4. Loss function and imbalanced data

All model architectures output 17 values corresponding
to the 17 labels associated with each image; a sigmoid
nonlinearity was applied to ensure all final scores ranged
between zero and one. A binary cross-entropy (BCE)
loss independently to all atmospheric and terrestrial labels.
Specifically, the BCE loss for each feature j is:

`j =
1

N

∑
i

(
t
(j)
i log o

(j)
i + (1− t(j)i ) log(1− o(j)i )

)
where t(j)i ∈ {0, 1} is the ground truth label for image i on
feature j, o(j)i ∈ (0, 1) is the model estimate, and N is the
number of images in the training set or minibatch. The full
loss was the average BCE across features: L = 1

17

∑
j `j .

Since many of the terrestrial features have few posi-
tive examples, we experimented with re-weighting the loss
function such that images with positive labels for rare
classes had a larger gradient during training. Specifically,
we define the weighted BCE loss as:

`j =
1

N

∑
i

(
t
(j)
i log o

(j)
i

fj + γ
+

(1− t(j)i ) log(1− o(j)i )

1− fj + γ

)
,

where fj = 1
N

∑
i t

(j)
i is the proportion of images with a

positive label for feature j and γ > 0 is a hyperparameter
that controls the relative weighting of positive and negative
examples. (As γ → ∞ the weighted BCE loss approaches
the unweighted BCE loss up to a constant scaling factor.)

The unweighted BCE loss equally penalizes false pos-
itive and false negative predictions from the model, while

Figure 3. How decision thresholds for each feature effect the F2
score (model 015). The red point for each feature indicates the
optimal threshold (determined from training set) that was used on
the validation and test sets.

the weighted BCE loss differentially penalizes these errors
based on the frequency of the label in the training data. Pos-
itive training examples (t(j)i = 1) are weighted more heavily
for very rare labels (fj ≈ 0), and negative training exam-
ples (t(j)i = 0) are weighted more heavily for very common
labels (fj ≈ 1). We found that a relatively large value for γ
produced better performance in all models (Model 015 used
γ = 1), but was generally not critical for performance.

4.5. Optimizing Decision Thresholds

The weighted and un-weighted BCE loss functions were
simple to implement and interpret. However, this loss was
not directly related to the mean F2 score that was used to
compare models in the Kaggle competition. Thus, at the
end of each epoch we determined the decision threshold for
each feature that maximized the F2 score on the training set.
This is visualized for each feature in Figure 3; while a naive
threshold of 0.5 (black dashed line) performed reasonably
well when the γ hyperparameter was appropriately tuned,
we obtained modest improvements in performance by tun-
ing the decision threshold of the model post-training.

5. Results

After only ten epochs of training, the simple model ar-
chitecture (section 4.2) achieved a validation and training
F2 score of 0.88; suggesting that even relatively simple
models that utilize the near-IR channel can perform quite
well on this task. ction We trained the deep residual archi-
tecture (section 4.3) more extensively and achieved a valida-
tion F2 score of 0.9 (model 015). We submitted this model
for evaluation on the Kaggle test set, and received a similar
score of 0.898 suggesting that our model was not overfit.
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- model properties performance (mean F2)
model architecture params optimizer epochs train val test

008 ConvNet 21.0M Adam 10 / 10 0.88 0.88 -
013 ResNet 1.55M Adam 22 / 53 0.94 0.89 -
015 ResNet 1.55M SGD+M 104 / 135 0.91 0.90 0.898

Table 1. Summary of model architectures, hyperparameters, and performance. The epochs column denotes the epoch of maximal perfor-
mance followed by the total number of epochs.

Figure 4. Mean F2 score on the training and validation image sets.
Left, model 013 optimized with Adam. Right, model 015 opti-
mized with SGD.

5.1. SGD generalized better than Adam

We originally fit all models with Adam, an adaptive gra-
dient method that rescales parameter updates by estimates
of lower-order moments of the gradient [12]. However, do-
ing so resulted in substantial overfitting — the F2 score of
our model became higher on the training set than on the val-
idation set (Figure 4, left). Recent work has suggested that
Adam identifies solutions that are less generalizable (i.e.
overfit) than SGD and other non-adaptive methods [21], es-
pecially with a large batch size [11]. Switching to SGD
with momentum marginally improved performance on the
validation set, and greatly decreased the gap between the
training and validation set (Figure 4, right).

5.2. Ignoring atmospheric label constraints did not
drastically hurt performance

One concern about our approach is that our models do
not incorporate two constraints of the true problem. First,
each image contains exactly one atmospheric label while
our models can output multiple atmospheric labels. Sec-
ond, any image labeled as cloudy has no other labels while
our model can attach additional labels to these images. We
therefore examined whether our models produced unrealis-
tic predictions with respect to these constraints.

Our models assigned a single atmospheric label to the
majority of images in the validation set, despite this not be-
ing a hard constraint (Figure 5, left). Interestingly, no im-
ages were assigned a single atmospheric label, and very few
images were assigned more than two atmospheric labels.
We found that replacing the multi-label predictions with a
single atmospheric label (the one with maximal score) mod-

Figure 5. Assessing atmospheric labels in model 015. Left, num-
ber of atmospheric labels assigned to each image. Right, effect
of nullifying other labels when a cloudy label is applied above a
particular threshold.

estly decreased performance on the validation set and never
increased performance. This makes sense because false
positives are less harshly punished than false negatives, so
assigning two atmospheric labels is a reasonable way for the
model to hedge its bets.

Next, we investigated the effect of nullifying all labels
other than cloudy for images labeled as such by our model.
Again, since the F2 score does not penalize false positives
as harshly as false negatives, we found no performance im-
provement. Figure 5 (right) shows the effect of nullifying
other labels when the model outputs a score for cloudy that
is above a threshold between zero and one half. Setting this
threshold at one — i.e. the upper bound of model output —
was optimal and matched the baseline performance (dashed
line). Thus, it was never advantageous to use the cloudy la-
bel to nullify other labels. Overall, these results show that
our choice to treat each label independently in the loss func-
tion was not problematic for our performance.

5.3. Qualitative analysis

We qualitatively characterized the output of our best per-
forming model by plotting the co-occurence matrix of ter-
restrial labels (Figure 6); which closely matched the ob-
served correlations in the ground truth dataset (Figure 2).
This is notable since our loss function was applied indepen-
dently to each label, meaning the model was not directly
constrained to produce these correlations.
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Figure 6. Co-occurrence matrix of label predictions, model 015.
(Compare with Figure 2).

We then visually inspected images that our model incor-
rectly labeled (Figure 7). We were pleased to observe that
many of the false negative images were not easily identi-
fied by our (admittedly non-expert) visual inspection. In
addition, many false negative images contained significant
cloud cover. We also examined and verified images that our
model correctly labeled, which tended to be more recogniz-
able (data not shown).

6. Discussion

Satellite image datasets are particularly amenable to use
in machine learning contexts. These datasets provide rich
(multi-channel) and diverse images that can be used to mon-
itor land use through time. However, given the size and
resolution of these datasets, annotation must be automated
to monitor resources in near real time. We have leveraged
the latest advances in convolutional neural networks to con-
struct a deep learning model that is able to rapidly and ac-
curately annotate satellite images of the Amazon rainforest.

Our algorithm has potential implications for environ-
mental monitoring, where knowing and understanding hu-
man encroachment into the forest is key to halting illegal
action and aiding in conservation efforts. By labeling im-
ages algorithmically, throughput is greatly increased and,
consequently, response time can be decreased. We are able
to discern a great variety of human activities, which has the
potential discriminate between legal activities and illegal
activities, since the visible signatures are different. Specifi-
cally, the dataset contains two labels that describe the min-
ing operations: conventional mine and artisinal mine. Con-
ventional mining describes large-scale mining operations
that are more likely to be legally permitted. In contrast,
artisinal mining describes smaller scale mining operations
that are more likely to be illegally installed in the forest.

Figure 7. Left, false negative labels given by model 015 for each at-
mospheric and terrestrial feature. Right, false positive labels given
by model 015 for each atmospheric and terrestrial feature.

Our model could be used direct law enforcement and con-
servation officials to only illegal operations, while allowing
the conventional, legal operations to continue.
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A primary concern when attempting to annotate satellite
images is cloud cover. Cloud cover obscures the view of the
ground, which can change the labels applied to a specific
image. Our model considers each of four possible classes
for cloud cover and applies a label or labels that it finds
appropriate. While the ground truth labels forbid any addi-
tional labels on a cloudy image, we found that we did not
need to impose this constraint on our model for good per-
formance.

We crossed several hurdles while training our model.
The first and primary challenge was that our dataset was
inherently unbalanced. Specifically, some labels, such as
primary for primary rainforest, appeared in the overwhelm-
ing majority of images, while others, such as slash burn
for farmland cleared by a slash and burn logging technique,
appeared far more rarely. We attempted to correct for this
imbalance by implementing a weighting correction over our
loss function.

The second hurdle we faced was in attempting to curb
overfitting. We initially trained our model using the Adam
optimizer, which led to rampant overfitting to the training
data as measured by an epoch-over-epoch increase loss on
the validation dataset. Adam is known to be prone to over-
fitting, especially with large batch sizes, such as those em-
ployed during training of our model. Fortunately, we were
able to correct this issue by switching to a standard stochas-
tic gradient descent with momentum.

We initially found that a relatively simple model com-
posed of two-dimensional convolutional layers and several
fully-connected layers performed quite well on the satellite
image dataset. However, we found that adding layers and
residual connections to the network increased performance,
but that the models became more prone to overfitting. By
changing the optimizer, we were able to create a final model
that had increased performance.

When measured using the F2 statistic, our final model
performs well, coming within five percent of the top per-
forming algorithm on the Kaggle leaderboard. However,
several issues with the training dataset have been brought to
our attention that could be negatively affecting our model’s
predictions. First and foremost, a discussion in the Kag-
gle forums (https://www.kaggle.com/robinkraft/issue-with-
tif-files) has raised the issue of corrupted TIFF files that
were distributed for model training. Additionally, several
competitors have noted improved performance when using
the JPEG formatted images for training. These findings call
into question the integrity of the TIFF dataset, which we re-
lied upon for training. This finding is unfortunate, because
the TIFF files contain the near-infrared channel, whereas
the JPEG images do not. The three-channel JPEG images
are compatible many pre-trained architectures, which some
competitors have used to great success, whereas the po-
tentially more information-rich TIFF files are not. We at-

tempted to build a custom architecture to harness the in-
creased information content of the TIFF files, but training
and performance have likely been hindered by the afore-
mentioned issues with that particular dataset.

A second, but less specific issue is that of potential mis-
labeling in the “ground truth” dataset. Figure 7 shows false
negative and false positive labels from our model on the left
and right sides, respectively. In some of these images the
section of the image giving rise to each ground truth label
is not entirely clear upon human examination. It is possible
that some of the images in the dataset were mislabeled, con-
sidering both the size of the dataset and the inexperience of
the croudsourced labelers.

7. Conclusion

Here, we present a purpose-built deep convolutional neu-
ral network for classification of atmospheric conditions and
labeling of terrestrial development using a satellite image
dataset. This architecture utilizes all four channels of pro-
vided spectral information and performs within five per-
cent of the top performing model on Kaggle at the time
of submission. Alternative approaches, such as those pre-
trained on an orthogonal dataset, are more finely tuned
than our current adaptation; however, by incorporating
the near-infrared, our model likely has greater room for
improvement with further hyperparameter tuning. This
work demonstrates that a relatively simple architecture can
achieve exceptional performance on satellite imaging label-
ing tasks, especially when all available information is fed
through the network.

7.1. Future directions

We have several ideas to further improve the perfor-
mance of our model. The first potential direction is to train
a separate model for each of the individual labels in addi-
tion to a single model to classify the atmospheric condi-
tions. Each binary label prediction can then be pooled with
an individual atmospheric class to produce the labels for any
given image. We believe that, while hyperparameter opti-
mization may be far more difficult, allowing each network
to fully specialize may lead to more accurate labeling.

A second strategy to improve performance is to create
an ensemble of models that can collectively vote on the ap-
propriate label set for an image. It is widely accepted that
ensembles of models tend to outperform individual models
for many tasks. It would be trivial for us to train several
slightly different models and ensemble their predictions.

Finally, we would like to implement further data aug-
mentation, including blurring, into the input preparation
pipeline. A new input processing pipeline could be at-
tached to our current model as well as any ensemble or
multi-model frameworks. Further data augmentation would
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also serve to potentially increase the dataset size, which also
have a potentially positive impact on training.

8. Model Architectures
ConvNet

(0): Conv2d(4, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU (inplace)
(2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(3): Conv2d(32, 32, kernel_size=(2, 2), stride=(2, 2))
(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(5): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU (inplace)
(7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(8): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU (inplace)
(10): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(11): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(12): ReLU (inplace)
(13): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(14): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU (inplace)
(16): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(17): Flatten ()
(18): Linear (524288 -> 40)
(19): BatchNorm1d(40, eps=1e-05, momentum=0.1, affine=True)
(20): ReLU (inplace)
(21): Dropout (p = 0.2)
(22): Linear (40 -> 17)
(23): Sigmoid ()

ResNet
ResLayer (

(conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(relu): ReLU (inplace)
(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True))

(0): Conv2d(4, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU (inplace)
(2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(3): Conv2d(32, 32, kernel_size=(2, 2), stride=(2, 2))
(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(5): ResLayer ()
(6): ResLayer ()
(7): ResLayer ()
(8): ResLayer ()
(9): Conv2d(32, 32, kernel_size=(2, 2), stride=(2, 2))
(10): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(11): ResLayer ()
(12): ResLayer ()
(13): ResLayer ()
(14): ResLayer ()
(15): Conv2d(32, 32, kernel_size=(2, 2), stride=(2, 2))
(16): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
(17): ResLayer ()
(18): ResLayer ()
(19): ResLayer ()
(20): ResLayer ()
(21): Flatten ()
(22): Linear (32768 -> 40)
(23): BatchNorm1d(40, eps=1e-05, momentum=0.1, affine=True)
(24): ReLU (inplace)
(25): Dropout (p = 0.2)
(26): Linear (40 -> 17)
(27): Sigmoid ()
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