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Abstract

This paper documents our team’s approach to the Kag-
gle Competition: Understanding the Amazon from Space.
The challenge consisted of labeling, as accurately as pos-
sible, satellite images of the Amazon rainforest with the at-
mospheric and geographic conditions shown in each image.
Our team employed an ensemble of pre-trained models with
customizations along with careful pre- and post-processing
to achieve an F2 score of 0.9285 and a rank of 33rd out of
438 competitors.

1. Introduction
Deforestation in the Amazon basin is a growing concern

due to its devastating impact on biodiversity, habitat loss
and climate change. An ongoing competition in Kaggle
aims to use the land usage pattern data in the Amazon to
better understand how and where deforestation is happen-
ing. In this paper, we discuss our approach to solving this
Kaggle challenge: Planet: Understanding the Amazon from
Space. [14]

The objective is to label 256 by 256 satellite image chips
from the Amazon with atmospheric conditions and different
classes of land cover and use. The atmospheric conditions
are either clear, hazy, partly cloudy, or cloudy. Some exam-
ples of land cover labels are primary rainforest, cultivation,
roads, water, mines etc. Each image can consist of multiple
labels.

Our current best model is an ensemble consisting of cus-
tom layers trained on top of SqueezeNet [10], Inception
[23], ResNet [9], and Xception [6] pretrained models. Our
single best performing model was an architecture that mod-
ified SqueezeNet to be deeper, and split at the second to
last layer between separate networks to predict the weather
labels and the ground cover layers.

2. Related Work
There have been previous papers that examine possible

approaches to the analysis of satellite imagery. [16] shows
how Deep Learning can be applied to the classification and
segmentation of satellite city imagery. The paper takes

the approach of using CNN’s and a per-pixel classification
method to categorize the images into the buckets of vegeta-
tion, ground, roads, buildings and water.

[25] also takes a CNN based approach to using maps
street view data to count number of tress but focuses more
on combining satellite views with street views than optimiz-
ing just for satellite images.

[3] addresses a similar problem of classifying satellite
image data into land use categories. As part of the paper
two datasets, SAT-4 and SAT-6 are developed where SAT-6
classifies images into categories: barren land, trees, grass-
land, roads, buildings and water bodies. The paper first tries
a Deep Belief Network (DBN), but an architecture using
CNNs easily outperforms that. However, the final architec-
ture presented in the paper includes a feature extractor, fol-
lowed by some unsupervised pre-training combined with a
DBN and this outperforms the CNN. The paper argues that
traditional deep learning architectures are good at learning
sharp/edge based features but are not useful for satellite im-
agery because satellite datasets have high intra and inter-
class variability. They also have lesser amount of training
data compared to the total dataset size including test exam-
ples. Also, higher-order texture features are a very impor-
tant discriminative parameter for various land-cover classes.
The best DBN model combined with feature extractor pre-
sented in the paper gets an accuracy of around 98% and 94%
on SAT-4 and SAT-6. However, the task we are tackling is
more involved since the nature of the labels is more intri-
cate as opposed to simple broad classes as in SAT-6. We
also have 17 categories instead of 6.

We also derived inspiration from [13] which was another
satellite image classification contest on Kaggle. The winner
of the contest used sliding windows, ensembling, data aug-
mentation by oversampling rare classes, and post process-
ing to disambiguate easily confused classes. He also trained
his network from scratch using the U-NET segmentation
network that had been employed in previous Kaggle com-
petitions, which we are considering doing as a next step.
[18]
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3. Evaluation
The competition is judged on F2 score, defined as fol-

lows. Let N be the total number of test samples, Li and
L̂i be the true and predicted labels for the i’th test sample,
respectively. Then:

Pi =
|Li ∩ L̂i|
|L̂i|

Ri =
|Li ∩ L̂i|
|Li|

F2 =
5

N

N∑
i=1

PiRi

4Pi + Ri

Compared to the more common F1 score, the F2 penalizes
false negatives more heavily than it penalizes false posi-
tives. [20]

4. Data
The data for this competition is from [12] and consists

of 40,479 training samples and 61,192 test samples from
satellite imagery. Each image is of size (256, 256, 3), with
the channels representing R, G, B. Each pixel in an image
corresponds to a resolution of 3.7 m meters on ground. We
split 20% of the training data into a validation set with a
fixed random seed, giving us 32,384 training samples and
8,095 validation samples.

The data was also provided in 4-channel TIF format,
with the fourth channel being infrared. Top competitors
noted severe data quality issues with the TIFs and unclear
performance after working around those data quality issues
so we decided to limit our attention to the JPGs only. [4]
[17] [24] [5]

4.1. Distribution

The dataset has a skewed distribution biased towards the
clear weather label and the primary rainforest label. The
weather labels are exclusive, i.e. it can only be one of clear,
hazy, partly cloudy or cloudy. If the label is cloudy, then
the image is too cloudy to identify the land use pattern,
hence such an image generally has no land cover label. If
the weather label is anything other than cloudy, then any
number of land cover labels can be applicable to the im-
age depending on the content. Labels like ‘blow down’,
‘conventional mine’, ‘slash burn’, ‘artisinal mine’, ‘selec-
tive logging’ and ‘blooming’ are very infrequent and to-
gether only account for about 1% of all the labels found
in the dataset.

Example images with labeled data are shown in 1. The
class distributions for the train/validation datasets is shown
in Table 1.

Figure 1. Example Labeled Images

Label Type Label Training Validation

Weather
Labels

cloudy 1844 486
haze 2163 532
partly cloudy 5773 1478
clear 22604 5599

Land
Cover
Labels

cultivation 3590 887
primary 30278 7562
water 5785 1477
artisinal mine 267 72
habitation 2913 749
bare ground 678 181
blow down 79 19
agriculture 9840 2498
selective logging 263 77
conventional mine 86 14
slash burn 167 42
blooming 267 65
road 6424 1652

Both Total 93021 23390
Table 1. Class Label Distribution

4.2. Quality Issues

The data was labeled by humans using a 3rd-party
crowd-sourcing company, and there are severe data quality
issues. [12]

First, the distribution of the labels does not match the
descriptions and definitions of the labels. For example, the
description of the ‘cultivation’ label explains:

Shifting cultivation is a subset of agriculture that
is very easy to see from space, and occurs in ru-
ral areas where individuals and families maintain
farm plots for subsistence.

However, in the training data, cultivation is not actually
a subset of agriculture; out of 4477 images with the cultiva-
tion label, 1100 of them do not include the agriculture label.
By eye, we were unable to discern a clear pattern in which
of those images also included the agriculture label.

Similarly, the description of ‘slash-and-burn’ claims it
is a subset of cultivation, while in the actual data, 83 out
of 209 slash-and-burn images do not include the cultivation
label.
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Second, the dataset includes many examples that are
nearly impossible by eye to determine what is going on.
For example, contrast an example of ‘clear agriculture’ with
‘clear primary water’:

Or, consider the following image labeled ‘haze cultiva-
tion primary agriculture’, which appears to be missing any
agriculture:

We believe the ambiguity inherent in examples like these
are the reason why the current best F2 score of any competi-
tor is only 0.93320.

5. Methods

5.1. Pre-Processing

Since our pretrained models were trained on ImageNet
[8], we first normalized by subtracting the per-channel
means from the ImageNet dataset. This normalization
method is from Keras Framework [7] in TensorFlow [1].
We used numpy low-precision 16-bit floating point values
so that we could fit the entire training dataset in memory.

We used two augmentation strategies for different mod-
els in our ensemble:

Conservative Augmentation:
In this strategy, before training on any image we randomly
applied random horizontal and vertical flips and shifts. The
points outside the input in a shift was filled via reflecting the
input image. This augmentation strategy improved results
on all models and was relatively fast.

Aggressive Augmentation:
In this strategy, before training on any image we performed
the same transformations as in Conservative Augmentation

above, but also applied a random rotation of up to 180 de-
grees, a random shear, a random zoom, and a small random
perturbation to all the values. This is an aggressive augmen-
tation strategy that significantly slowed training time and
improved results only on some models.

We also implemented a flexible sub-sampling and super-
sampling framework. We defined a model parameter Θ
representing the desired super-sampling or sub-sampling of
each class. Then during training, we first selected the label
of each training sample according to:

Pr(label L selected for training)

∼ ΘL ∗ (Frequency of L in training data)

And then drew a random row having that label from the
training set. Our final configuration sub-sampled the pri-
mary class to 1

10 of its original frequency, super-sampled
all rare classes by a factor of 2, and also super-sampled the
cloudy class because accurate cloudy labels are particular
useful in our post-processing.

5.2. Loss Function

Since there is exactly one true weather label plus one or
more non-weather labels, the evaluation metric is partially
categorical.

For most models in our ensemble, we ignored this effect
and used a sigmoid layer into a binary cross-entropy loss
function, and exploited the partially categorical nature in
the post-processing instead.

For one version of our SqueezeNet model, we split the
architecture near the end, with one branch predicting the
four weather labels and the other branch predicting the re-
maining labels. We used a softmax for the weather labels
and a sigmoid for the remaining labels; however, the binary
cross-entropy loss for both outputs still outperformed vari-
ous categorical losses. We weighted the loss on the weather
branch 1

20 the loss of the main branch.
The split architecture models performed slightly better

individually, but the ensemble as a whole performed better
when both types of models were included. We also tried
tweaking the relative weights of loss functions within each
class, but were unable to find any performance improve-
ments.

5.3. Post-Processing

The true labels had several logical constraints: exactly
one weather label was present at any time, and if the
weather label was ‘cloudy’, then no ground cover labels
were present. However, since the F2 score penalizes false
negatives worse than false positives, enforcing these con-
straints on the predictions reduced performance signifi-
cantly.
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However, we were able to successfully leverage these
constraints to gain a small but consistent performance im-
provement via the following algorithm:

Stage 1: Find the global threshold that optimizes F2

score. Use this is an initial guess for threshold of each col-
umn.

Stage 2: Find the per-column threshold that optimizes
F2 score on the training data, given the best threshold found
so far on the other columns.

Stage 3: For each weather label, step through possible
thresholds for ‘weather exclusivity’; i.e. thresholds at which
we are confident enough in this label to remove any other
predicted weather labels.

Stage 4: Step through possible thresholds for complete
exclusivity of the cloudy label; i.e. thresholds at which we
are confident enough in the cloudy label to remove all other
predicted labels.

Stage 5: Repeat step 2 once more.
This algorithm generally chose lax thresholds (0.1 to 0.4)

for predicting labels, and very strict thresholds (0.8 to 1.0)
for applying exclusivity. Stage 5 generally chose a signif-
icantly lower threshold for ‘primary’ than Stage 2, since
many of true negatives for ‘primary’ were accounted for in
Stage 4.

Although we developed them independently, stages 1-
2 became common knowledge among all competitors after
being published in a blog post [2]. To our knowledge, the
remaining stages are unique to our group.

5.4. Models

We trained various models available in Keras framework.
We did not include the top fully connected layers for any
of the pre-trained ImageNet model weights we loaded be-
cause the images sizes they were trained on did not neces-
sarily match our image sizes. We included custom Fully
Connected layers and Dropout for the top layers. We use
a sigmoid activation function at the top so that our model
is setup to output one probability for each of the 17 binary
class labels.

5.4.1 SqueezeNet

Our current best model uses the SqueezeNet network [10]
with weights pretrained on ImageNet [8], accessed through
[21]. Dropped the last two dense layers, deepened it by
adding three more fire modules plus dropout, replaced the
Global Average Pooling with a Global Max Pooling [19]
layer, and added two different architectures of output layers.
2

The output layers are either a single FC-2048 followed
by dropout and sigmoid-17, or the split architecture dis-
cussed in 5.2, with the following branches:

branch 1:

Figure 2. Augmented SqueezeNet Architecture

FC-1024
Dropout(0.5)
Sigmoid-13: ground-cover labels

branch 2:
FC-512

Dropout(0.5)
Softmax-4: weather labels

The split architecture performed better in isolation, but
both models contributed to the overall ensemble perfor-
mance.2

We introduced each of the modifications to the original
SqueezeNet one at a time, freezing the weights of the pre-
vious iteration of the architecture, running to convergence,
and then unfreezing the full model.

Both of these models used the full image size (256, 256,
3), which required training additional parameters in top lay-
ers of the original SqueezeNet. We also experimented with
resizing the images to the SqueezeNet input size (227, 227,
3) with bicubic interpolation, but were unable to match the
results of the full image.

5.4.2 ResNet50

We used the Keras Resnet50 [9] model with weights pre-
trained on ImageNet [8]. The images used for pre-training
are (224, 224, 3) in size. The last layer of Resnet50 without
including the top is 7*7 2D AveragePooling. This seems to
be optimized for the 224*224 image sizes and we noticed
that the training was slow on our images of size 256*256.
We changed the 2D AveragePooling layer to 8*8 and added
a GlobalAvergaePooling layer along with a couple of fully
connected layers and Dropout. The architecture is shown in
2

5.4.3 InceptionV3

We used the Keras InceptionV3 [23] model with weights
pre-trained on ImageNet [8]. The images used for pre-
training are (299, 299, 3) in size. We include a couple of
fully connected layers as shown in 4
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Figure 3. Resnet Architecture

Figure 4. InceptionV3 Architecture

5.4.4 Xception

We used the Keras Xception [6] model with weights pre-
trained on ImageNet [8]. The images used for pre-training
are (299, 299, 3) in size. We include a couple of fully con-
nected layers as shown in 5

5.4.5 VGG19

We used the Keras VGG19 [22] model with weights pre-
trained on ImageNet [8]. The images used for pre-training
are (224, 224, 3) in size. We include a couple of fully con-
nected layers as shown in 6

Figure 5. Xception Architecture

Figure 6. VGG19 Architecture

5.4.6 Ensemble of Models

We use a simple majority voting technique as described in
[11]. Each label for each sample was predicted if a major-
ity of models in the ensemble predicted the label on that
sample.

5.4.7 Transfer Learning - Training Models

We adopt a transfer learning based approach to training. We
start by loading model weights pre-trained on ImageNet and
freezing them. We train our added top layers by using a rel-
atively high learning rate. After few epochs, we unfreeze
a few of the top layers of the loaded pre-trained model and
train for few more epochs with a lower learning rate. We
continue the process of unfreezing more layers of the model
from top down and training them with subsequently lower
learning rates. The size of top layers we added, the num-
ber of layers unfrozen every time, the number of epochs af-
ter which layers are unfrozen, the learning rate and the rate
of learning rate drop are all hyperparameters tuned to each
specific model. More details about the training process and
graphs are available in appendix A.
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Base Model Augmentation Top Layers Train F2 Val F2 Test F2

SqueezeNet Conservative Split 0.9352 0.9230 0.9221
SqueezeNet Conservative 2x FC-2048 0.9360 0.9223 0.9214

Resnet Aggressive FC-1024 0.9372 0.9233 -
Resnet Conservative FC-1024 0.9307 0.9170 -

Inception Conservative FC-256 0.9308 0.9129 -
Xception Aggressive FC-512 0.9322 0.9158 -

VGG Aggressive FC-256 0.9257 0.9197 -
Ensemble - - - 0.9292 0.9285

Table 2. Model Summaries

6. Results and Discussion

Our latest submission on Kaggle scored 0.9285 on the
public leaderboard test set, which as of submission on June
12, 2017 placed us 33rd out of 438 competitors. Our best in-
dividual model submission was based on SqueezeNet with
the split architecture on top, and achieved 0.9230 F2 on our
validation set, and 0.9221 on the public leaderboard test set.

Our ensembling was surprisingly effective. Models
trained on different pretrained models turned out to con-
tribute to the ensemble performance even when, like Incep-
tion, their individual scores were significantly worse than
the other models. By contrast, we had many variations of
SqueezeNet with different top layers or meta parameters
that scored around 0.92 on the validation F2, which turned
out not to contribute marginal improvements to the ensem-
ble. Presumably they were too similar to the two existing
SqueezeNet models in the ensemble.

2 summarizes the performance of each of the individual
models along with the ensemble.

7. Future Work

Our approach has paid off with a good leaderboard rank
and position [15]. However, the competition has a month
remaining, and we need to keep improving to remain com-
petitive.

Although all of our models have some gap between train-
ing and validation performance, only Xception is displaying
the classic overfitting pattern where the training error con-
tinues to decrease while the validation error flattens or in-
crease as epochs increase. For the others, we think we can
increase the capacity of our models by increasing the depth
or width of our final layers, or adding more layers in the
style of the pretrained models. VGG in particular has only
a small gap between training and validation and needs an
increase in complexity.

In our pre-processing, we plan to carefully incorporate
the IR channel, perhaps using some concatenation scheme
where the model can easily ignore the channel when it’s not
useful. We also plan to explore different styles of sliding
windows to increase data augmentation, so that we can re-

duce overfitting in Xception in particular.
In our post-processing, we plan to change our ensembles

to take the raw probabilities as input instead of the predic-
tions, and searching for a more sophisticated way to do the
exclusive weather post-processing on multiple model prob-
abilities.

Finally, we plan to explore training one model architec-
ture without any pretrained model. In particular, the U-
Net architecture is popular among other Kaggle competi-
tors, and is our top candidate for training from scratch. [18]
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Appendix A. Training Graphs

Figure 7. SqueezeNet split-architecture training graphs. The dis-
continuities near the middle are from changing the architecture of
the last few layers; the discontinuities towards the end are from
adding the split architecture and tweaking the relative weights of
the two loss functions.
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Figure 8. SqueezeNet 2x FC training graphs. The discontinuities
are from changing the architecture of the last few layers.

Figure 9. ResNet Training Graphs
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Figure 10. Xception Training Graphs - The sharp edges at epochs
20, 40 and 65 are due to unfreezing of layers. The sharpness re-
duces at higher epochs since there is lesser dataset specific features
to learn at lower layers since these are for learning more general
representations.

Figure 11. Inception Training Graphs - Inception in general makes
steady but very slow progress and in comparison to other models
took more epochs to train to similar levels
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Figure 12. Vgg Training Graphs - The sharp edges seen at epochs
20 and 40 are because we unfreeze layers at these epochs.
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