
Predicting Amazon Deforestation with Satellite Images

Eric Xu
Stanford University

ericxu0@stanford.edu

Orien Zeng
Stanford University
ozeng@stanford.edu

Abstract

In this paper, we investigate the impact of using neural
networks to analyze satellite images of deforestation in the
Amazon. Specifically, we explore various forms of convo-
lutional neural networks, such as the SqueezeNet and VG-
GNet, in order to identify atmospheric and land labels of the
images. We also introduce the Split Classifier model, which
first generates an intermediate output of the image and then
passes it into separate classifiers that look for atmospheric
and land label clues separately. However, after a thorough
analysis of the models and saliency maps the neural nets
produce, we conclude that atmospheric and land labels may
have some correlation, so learning them separately can be
suboptimal.

1. Introduction

The forests on Earth are rapidly shrinking due to hu-
man urbanization. In fact, the world loses almost fifty foot-
ball fields of forest area every minute. Deforestation in
the Amazon Basin has been particularly noticeable, leading
to reduced biodiversity, climate change, and habitat loss.
However, satellites have taken thousands of pictures of the
forests, and analyzing them could provide significant in-
sight into the causes and effects of deforestation. Conse-
quently, algorithms interpreting satellite images of these lo-
cations are necessary to help groups respond to deforesta-
tion quickly and effectively.

2. Problem

Planet, a group that provides images of the Earth through
satellites, has provided more than 40000 images of the for-
est scenes from the Amazon basin (which includes Brazil,
Peru, Uruguay, Colombia, Venezuela, Guyana, Bolivia, and
Ecuador) on Kaggle. The 256× 256 images are in Tiff for-
mat and contain four channels of data: red, green, blue, and
near infrared. There are also a set of JPEG images for ref-
erence, which are smaller in storage size and thus may pro-
vide less information than the Tiff images. Unfortunately,

several sources on Kaggle have reported that the Tiff im-
ages do not correctly correspond to the truth labels. Conse-
quently, the models in this paper all use the JPEG images
for training, validation, and testing.

The JPEG images are similarly 256 × 256 in size, and
contain three channels: red, green, and blue. Each of the
training images is labeled with a subset of seventeen differ-
ent labels. Those seventeen labels are organized into three
groups: atmospheric conditions, common land cover/land
use phenomena, and rare land cover/land use phenomena.
The atmospheric condition labels are cloudy, partly cloudy,
haze, and clear. The common land labels are primary, wa-
ter, road, agriculture, cultivation, bare ground, and habita-
tion. The rare land labels are artisinal mine, blooming, blow
down, conventional mine, selective logging, and slash burn.
An image will have at least one atmospheric label and zero
or more common/rare labels. Cloudy images should have
no other labels. In the labeled dataset given, it is impor-
tant to note that none of the images have more than one at-
mospheric label (although one image is incorrectly labeled
with no atmospheric label).

Indeed, the labeling of images is very costly and time
consuming, so there are labeling errors. However, the signal
to noise ratio is still high enough to be sufficient for training.
For the final test evaluation, the model predicts the labels of
over 60000 JPEG images in a test set. Of the test set, the
average score for half of the set is reported, while the aver-
age score of the other half is hidden. We use a validation set
to choose the best-performing set of weights while training,
and use those weights to predict on the test set. The score of
the visible test set is recorded, and from the visible test set
we pick the highest-scoring models to predict on the entire
test data.

The model is evaluated by F2 score so that recall (ratio of
true positives to all actual positives) is weighted higher than
precision (ratio of true positives to all predicted positives).
The final F2 score is formed by averaging the individual F2

scores of each label.

1



3. Related Work
Satellite image classification is not a new field. Wilkin-

son, G.G. in Results and implications of a study of fifteen
years of satellite image classification experiments reviews
satellite classification tasks since 1989. Among them, neu-
ral network approaches were popular. Benediktsson, J. et.
al in Neural network approaches versus statistical methods
in classification of multisource remote sensing data. com-
pared a three-layer net to statistical approaches such as max-
imum likelihood for Gaussian data. They revealed simi-
lar tradeoffs to using neural networks that we see today,
in that the three-layer net could achieve higher accuracy
but risk overfitting on non-representative training examples.
In 2007, Gamanya et. al in An automated satellite image
classification design using object-oriented segmentation al-
gorithms: A move towards standardization used spectral
and textural feature extraction to perform automated image
segmentation, with accuracies around 90%. Other models
include a Markov model in Classification of Multisource
Remote Sensing Imagery Using a Genetic Algorithm and
Markov Random Fields by Tso et. al and knowledge-based
methods, such as Implementation of temporal relationships
in knowledge based classification of satellite images by
Middelkoop and Janssen. More recently, Jean et. al in
Combining satellite imagery and machine learning to pre-
dict poverty describes an approach that utilizes satellite im-
ages of African countries to predict the regions’ poverty
levels. The model presented relied on transfer learning, in
which they took a pretrained convolutional neural net that
learned examples from ImageNet and fine-tuned it for this
new problem. This modified convolutional neural net then
predicts mean cluster-level values from the images as well
as features. From these values and image features, they
trained ridge regression models that estimated cluster-level
expenditures or assets.

Moreover, the Kaggle challenge deals with multi-label
classification. Therefore, ordinary softmax loss is not suf-
ficient to make a prediction on the classes. Platt et. al
in Large Margin DAGs for Multiclass Classification offers
a solution by modeling the problem with a binary classi-
fier for each pair of classes and their DAGSVM classifier
to combine the binary decisions into a multi-class classi-
fier. Other methods include winner-take-all and max-wins
(Zhang and Lenan, Classification of Fruits Using Computer
Vision and a Multiclass Support Vector Machine). How-
ever, these multiclass methods assume the classes are mutu-
ally exclusive. In this rainforest labeling task, the labels are
neither mutually exclusive nor independent.

For multi-label classification, Tsoumakas et. al in Multi-
label classification: An overview suggests for transform-
ing small multi-label tasks into multi-class task, where each
class represents a subset of the label set. Label set size is
a problem; Trohidis et. al avoids this in Multi-Label Clas-

sification of Music into Emotions by clustering labels into
combined labels, e.g. amazed-surprised and happy-pleased.
Vens et. al addresses interdependencies between classes in
Decision trees for hierarchical multi-label classification for
labels that can be organized into hierarchical trees or di-
rected acyclic graphs. Zhang and Zhou use a generalized
k-nearest neighbor approach in A k-nearest neighbor based
algorithm for multi-label classification and A lazy learning
approach to multi-label learning in which nearest neigh-
bors’ labels are combined using a maximum a posteriori
method to produce the given instance’s labels. Zhang and
Zhao also experiment with other loss functions in Multi-
Label Neural Networks with Applications to Functional Ge-
nomics and Text Categorization, proposing the following
two loss functions.

The first loss function was l2-loss. In this case, correct
labels are given a value of +1, and incorrect labels are given
a value of −1. Then the loss function, for N examples,
becomes

E =
1

2N

N∑
i=1

∑
l∈Y

(cil − dil)
2

where Y is the set of all labels, ci is the predicted output
vector, and di is the true label vector.

The second one is given by

E =

N∑
i=1

1

|Yi||Y i|

∑
(j,k)∈Yi×Y i

exp(−(cij − cik))

where Yi is the set of correct labels, and Y i is the set of
incorrect labels for the ith example. Intuitively, this loss
function attempts to stretch the difference between predic-
tions of the correct labels and predictions of the incorrect
labels. Thus, they believed that this one performs better
than l2 loss in practice.

In contrast, Huang et. al in Multi-task deep neural net-
work for multi-label learning proposes the Multitask Deep
Neural Net (MT-DNN) approach, which simply has a binary
classifier for each label in the output layer of the network,
where the loss is calculated by the sum of cross-entropy
losses for each label.

4. Approaches
We used multiple approaches to classify the images. Our

initial models were simple convolution neural nets, but they
eventually evolved into more complex models that utilized
properties of the data.

4.1. Simple Baseline

Our very first model was a vanilla Convolutional Neu-
ral Net. We used the JPEG images, so the inputs were of
size 256 × 256 × 3. We had two convolutional layers with

2



thirty-two 3× 3 filters, a padding of one, and stride of one.
Each convolutional layer was followed by a ReLU layer,
batchnorm layer, and a 2× 2 pooling layer (no padding) of
stride two. As a result, after the convolutions and pooling,
we ended up with a tensor of size 64× 64× 32.

Following the second pool layer were three dense layers,
transforming a flattened input of 64 × 64 × 32 = 131072
units to 1024 units to 256 units and finally to an output layer
of 17 units. The first two dense layers had ReLU activa-
tions. With the final output vector of size 17, we calculated
the loss function with sigmoid cross entropy.

The model was trained on 10 epochs with a batch size of
64 and a learning rate of 2× 10−5. To generate the predic-
tions of our model, we used a constant threshold of 0.5 after
the sigmoid layer, which translated to a constant threshold
of 0 for the output vector before the sigmoid activation. In
particular, if the ith element of the output vector was greater
than 0, we outputted the ith label in our predictions.

4.2. Complex Baseline

Our second model was very similar to the first, but con-
tained more layers and filters. Inspired by a starter model
on Kaggle (https://www.kaggle.com/anokas/simple-keras-
starter), our second model took in inputs of size 256×256×
3 (JPEG images) and applied a layer of batch normalization.
Next, the following layers were applied several times.

Let f be the number filters in this current block of layers.
The model used f filters of 3 × 3 convolutions with stride
of one and padding of one. Following that, it applied an-
other f 3 × 3 filters but this time with no padding. Both of
these convolutions had ReLU activations. After, we applied
a max pooling of size 2 × 2 with stride of two. Finally, we
added a dropout with a drop probability of 0.25.

The above block of layers was applied four times in all,
with f = [32, 64, 128, 256]. The result was a tensor of
size 14 × 14 × 256. After flattening this output, we ran
it through a dense layer with 512 units with a ReLU acti-
vation function. Then we applied another batchnorm layer
and a dropout layer with drop probability of 0.5. Finally, we
used a dense layer of 17 units to generate the final output.

As before, sigmoid cross entropy loss was used to gen-
erate the loss values. In addition, the constant threshold of
0 was again used on the output layer before the sigmoid ac-
tivation to generate the predictions.

The model was trained on 40 epochs all with batch size
64. The first twenty epochs used a learning rate of 10−3,
the next ten used a learning rate of 10−4, and the final ten
used a learning rate of 10−5.

4.3. SqueezeNet

Based on memory issues we encountered in larger nets,
we decided to try squeezenet in order to maintain efficiency.
The initial modifications only included changing the input

size to 256 × 256 × 3 and the number of output classes
to 17. The original network had fairly low memory usage
so we were able to make additions to the original model.
We created the initial model using the fire module code in
Assignment 3.

The first was that we noticed the network often classified
multiple atmospheric labels, e.g. cloudy and partly cloudy
in the same image. This event occured in about every 10-
20 images, which would certainly impair the class accu-
racy. Guessing that this was due to the single dense layer
in SqueezeNet, we added intermediate dense layers to al-
low the network to better learn relationships between the
atmospheric labels and between the cloudy label and other
labels (a cloudy image does not have ground labels).

Our second optimization was to simply add more depth:
we increased the model depth to have 35 fire modules.
Based on insights from ResNet, we added residual layers
to the network (by concatenating the previous layer to the
output of the fire module) to aid gradient flow and ease of
training, and used batch normalization after each fire mod-
ule. Continuing with the precedent in the SqueezeNet pa-
per, we let e11p = e33p = 4 * sp, and sp gradually increased
while the image size decreased due to max pooling: the fi-
nal fire module uses parameters of sp = 250, e11p = 1000,
and e33p = 1000.

4.4. VGGNet

We also tried the VGGNet as a potential classifier. As
usual, the input was a JPEG image with dimensions 256 ×
256 × 3. The output was then fed into two convolutional
layers with 64 filters of size 3 × 3 with stride of one and
padding of one. Then we applied max pooling of size 2× 2
of stride 2. After this layer, we added two more convolu-
tional layers of size 3× 3, but this time with 128 filters, and
one max pooling layer. This was followed by two convolu-
tional layers of size 3×3 with 256 filters and one more max
pooling layer.

Next, we added the following layers twice. We added
three convolutional layers of size 3 × 3 with 512 filters,
a dropout layer with drop probability of 0.3, and one max
pooling layer of size 2× 2.

The convolutions did not change the height and width
of the input but the pooling layers halved them, so in the
end, we are left with a tensor of size 8 × 8 × 512. We
then flattened the output and ran it through a dense layer
of size 4096 with ReLU activation. The result was passed
through a dropout layer with drop probability of 0.3 and
another dense layer with 17 units to produce the final pre-
diction vector.

Again, sigmoid cross entropy loss was used to generate
the loss values. However, the loss function this time was
weighted with a factor of 5 so that recall would be empha-
sized more over precision. This would help maximize the

3



F2 score. In addition, the constant threshold of 0 was again
used on the output layer before the sigmoid activation to
generate the predictions.

The model was trained on 10 epochs all with batch size
64. The first seven epochs used a learning rate of 2× 10−5

and the last three used a learning rate of 10−6.

4.5. Split Classifier

Figure 1. Split Classifier Model

While implementing classic convolutional neural net ar-
chitectures produced high accuracies, our next step was to
build a model that used more information about the data it-
self. In particular, the labels were split between atmospheric
and land descriptions, so we thought that training separate
classifiers for atmospheric and land would improve the F2

score. Furthermore, we knew that each image had at least
one atmospheric label. Yet, running a script through the la-
bels, we found that all but one of the images had exactly one
atmospheric label (that one image had no labels so that was
most likely a labeling error). Consequently, we assumed
that images should have exactly one atmospheric label.

Like all of the previous models, the input was still a
JPEG image of size 256×256×3. We then passed this input
through several VGGNet-like layers. Let f be the number
of filters in a block of layers. First, we applied two convo-
lutional layers of size 3 × 3 with f filters. Then we used a
max pooling layer of size 2 × 2. This block of layers was
implemented three times, with f = [64, 128, 256].

At this point, the model produced an output of size
32 × 32 × 256. Using this tensor as the base input, the

model then split into two separate classifiers. Both clas-
sifiers ran the tensor through three convolutional layers of
size 3× 3 with 512 filters, a dropout layer with drop proba-
bility 0.3, and a max pooling layer of size 2× 2. This gave
us two tensors of size 16 × 16 × 512. Next, we flattened
the output and applied a dense layer with 1024 units and a
ReLU activation, another dropout layer with drop probabil-
ity of 0.3, and a final dense layer. The first classifier, which
predicted atmospheric labels, produced an output vector of
size 4, while the other classifier produced an output vector
of size 13. These two tensors were then concatenated to
produce the final prediction.

Since we believed images to have exactly one atmo-
spheric label, we applied softmax cross entropy on the first
four elements (referring to atmospheric predictions). How-
ever, sigmoid cross entropy loss (with a weight of 5) was
used for the remaining elements. As before, the constant
threshold of 0 was again used on the output layer before the
sigmoid activation to generate the predictions for land la-
bels, and we predicted the atmospheric label with the largest
value.

The model was trained on 10 epochs all with batch size
32. The first seven epochs used a learning rate of 2× 10−5

and the last three used a learning rate of 10−6.

5. Results and Analysis

Table 1. Results on the dataset using various approaches

Model Train F2 Dev F2 Visible Test F2

Simple Baseline 0.969 0.827 0.827
Complex Baseline 0.938 0.878 0.876
SqueezeNet 0.928 0.890 0.887
VGG 0.944 0.904 0.903
Split Classifier 0.939 0.885 0.885

(Again, note that Visible Test F2 is the average of only
half of the test set.)

5.1. Simple Baseline

The simple baseline produced a training F2 score of
0.969, a validation F2 score of 0.827, and a test F2 score
of 0.827. As a result, the model clearly overfit, and we con-
firmed this by plotting the training loss versus the validation
loss. While the training loss curve decreased, the validation
loss curve began to creep up after the 5th epoch. To com-
bat overfitting, we decided to add significant dropout to the
next model.

4



Figure 2. Loss for Simple Baseline

5.2. Complex Baseline

The complex baseline produced a training F2 score of
0.938, a validation F2 score of 0.878, and a test F2 score of
0.876. This was a huge improvement over the simple base-
line, suggesting that a greater number of parameters as well
as dropout significantly boosted the accuracy. In addition,
this new model did a better job of not overfitting, as vali-
dation loss matched up closely with training loss up to the
first 20 epochs. However, afterwards, the losses diverged,
so more dropout or even lower learning rates could help.

Figure 3. Loss for Complex Baseline

5.3. SqueezeNet

The SqueezeNet produced a training F2 score of 0.928,
a validation F2 score of 0.890, and a test F2 score of 0.887.
Surprisingly, the model had the lowest train F2, even com-
pared to the simple baseline, while having the second high-
est validation F2 score. The SqueezeNet model used no

dropout, either, so the gap between train and validation is
smaller than we expected. This may indicate that the model
is under-trained, so we could increase the learning rate or
add more epochs. At the same time, the SqueezeNet model
took a long time to train, as we ran it for many more epochs
than the other models. Also, for validation loss, we saw di-
minishing returns after epoch 10, so we might want to have
fewer epochs but with higher learning rate. Towards the
end, our learning rate was 10−7, which may have had little
impact on the model.

At first, the SqueezeNet model used a single dense layer
at the end, and this model commonly predicted multiple
incompatible atmospheric labels on the same image, such
as cloudy and partly cloudy. By adding more dense lay-
ers, the rate at which this happened dropped heavily, indi-
cating that the dense layers allowed the network to recog-
nize relationships between atmospheric labels. In addition,
the model rarely predicts any other class when it predicts
cloudy, which is expected behavior.

Figure 4. Loss for SqueezeNet

5.4. VGGNet

The VGGNet produced a training F2 score of 0.944, a
validation F2 score of 0.904, and a test F2 score of 0.903.
This model obtained the best results, partially because of its
large number of parameters. Since it used a lot of convolu-
tional layers with small filters (3× 3), the network was able
to detect small features in the image and better predict the
labels. Furthermore, the dropout helped prevent overfitting,
as in the plot above we see that there is less of a gap be-
tween training and validation loss. However, after epoch 7,
the gap widened, suggesting that the model began to over-
fit at the end. We had lowered the learning rate for those
epochs from 2 × 10−5 to 10−6, so decreasing it even more
could be beneficial.

Looking at the predictions of this neural network, we

5



Figure 5. Loss for VGGNet

found that around 1000 images had multiple atmospheric
labels. This prompted us to try the split classifier which
would only predict one atmospheric label.

5.5. Split Classifier

Figure 6. Loss for Split Classifier

The split classifier produced a training F2 score of 0.939,
a validation F2 score of 0.885, and a test F2 score of 0.885.
Unfortunately, it produced lower scores than the VGGNet,
despite only outputting one atmospheric label. This implied
that the labels may be correlated with each other across the
two categories. For example, a cloudy image has no land
labels, but the model does not explicitly know that. Conse-
quently, learning the atmospheric and land labels separately
may not be ideal. With regards to the model parameters,
we saw that the model began to overfit after 6 epochs, so
adding more dropout and lowering the learning rate could
help the model obtain higher accuracies. Additionally, we
could experiment with using different learning rates for the

softmax and sigmoid loss training optimizers.

6. Visualizations
We experimented with class visualizations using gradi-

ent ascent for a class score on the pixels of an image, start-
ing from random noise. The resulting images would be la-
beled to have that class, but were very noisy and appeared
similar to random noise.

Figure 7. Class visualization for conventional mine

Here, we see the generated image for the class conven-
tional mine. For comparison, the clear image below is not
very different.

Figure 8. Class visualization for clear

When blurring, jitter and regularization are added, the
image appears to deform, as seen below.

Figure 9. Class visualization for blooming with high regularization

6



The reasons why the resulting visualizations are noisy and patchy are unknown. The gradient ascent on a single class
score did not train very well; we experimented with different learning rates and learning rate decay and various levels of
regularization. In the beginning, part of the issue was that the gradient was much higher on certain pixels, which would cause
those pixels to go out of bounds while other pixels didn’t train – in the above image, much of the black region has pixel values
of 0. To address this, we stepped in the direction of the gradient, but class scores still barely increased past the threshold.
One hypothesis is that the forest classes don’t always form clear shapes in the same way that ImageNet does; clouds don’t
have any high-level features that may just appear in a visualization.

7. Saliency Maps

After working on visualization of target classes, we created saliency maps for a few training examples. In the figure
below, we chosen one correct class to inspect for each image; most of these images have multiple correct labels, and we
simply choose one to inspect. We see that haze has gradients across the entire region, along with clear, although both have
hotspots of interest. These may correpond to some of the less homogenous areas of the image. For road, we clearly see the
saliency map trace out the road with low noise away far from the road, which is expected.

Below, we have the sum of the saliency maps for all the correct classes of the image. Note that the images are similar to the
single-class saliency maps, shown below; the model appears to be highly concerned with edge detection, even for classes that
don’t contain large edges such as agriculture or water. This makes sense as water can be recognized in part by the shoreline.

To inspect the differences between different class visualizations further, we visualize saliency maps on all correct classes
of the same image below. We see that the labels all pay attention to the shoreline across the image, but water has gradients in
the water while the road class is salient in the gray area of the image. Agriculture is salient in a similar region, where there is
a border between the green and gray land masses.

7



Finally, we visualize what the model looks for in incorrect classes for images. In the hazy image and the class conven-
tional mine, we generally see noise. Slash burn and road seems to be salient in small dots in their corresponding images;
maybe the slash burn class appears to show up in the small circular regions at the top-right of the image. Also, the white
area in the road may appear to be a cultivated area and the white area of the road could be interpreted as cloudier than the
surrounding haze.

8. Conclusion and Future Plans
Ultimately, the VGGNet performs the best in analyzing the satellite images. Furthermore, the results from the saliency

maps and F2 score of the Split Classifier reveal that classifying atmospheric labels and land labels separately is suboptimal.
This suggest that there is a correlation between the two types of labels, and it is better for the neural net to learn them by
processing them together.

Nevertheless, for the future, we plan to use advanced architectures implemented in GoogLeNet and ResNet to improve
our performance. Of these, pre-trained models are strong candidates for training, and we will add additional layers for fine-
tuning. Using transfer learning would make the training process faster and would provide highly optimized starting points for
training. Lastly, we believe that there may be underlying hierarchies in the labels, and getting a handle on those relationships
can greatly improve the accuracy.

8



References
[1] Anokas. ”Simple Keras Starter.” Kaggle. ¡https://www.kaggle.com/anokas/simple-keras-starter¿. We used this publicly available code

for our complex baseline classifier.

[2] Benediktsson, J. A., Swain, P. H., & Ersoy, O. K. (1990). Neural network approaches versus statistical methods in classification of
multisource remote sensing data.

[3] Gamanya, R., De Maeyer, P., & De Dapper, M. (2007). An automated satellite image classification design using object-oriented
segmentation algorithms: A move towards standardization. Expert Systems with Applications, 32(2), 616-624.

[4] He, Rich. ”XGB Starter.” Kaggle.¡https://www.kaggle.com/greenmtn/xgb-starter-lb-0-88232¿. In early networks we tested, we used
a feature extraction function based off of the code here. However, due to providing minimal benefits to the scores, this function was
not used in the final models.

[5] Huang, Y., Wang, W., Wang, L., & Tan, T. (2013, September). Multi-task deep neural network for multi-label learning. In Image
Processing (ICIP), 2013 20th IEEE International Conference on (pp. 2897-2900). IEEE.

[6] Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., and Keutzer, K. ”SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and ¡0.5MB model size”. arXiv:1602.07360. ¡https://arxiv.org/abs/1602.07360¿This paper introduces the SqueezeNet
architecture. Squeezenet code for creating fire modules was partly based off of Assignment 3 starter code.

[7] Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to
predict poverty. Science, 353(6301), 790-794.

[8] Middelkoop, H., & Janssen, L. L. (1991). Implementation of temporal relationships in knowledge based classification of satellite
images. Photogrammetric engineering and remote sensing, 57(7), 937-945.

[9] Platt, J. C., Cristianini, N., & Shawe-Taylor, J. (2000). Large margin DAGs for multiclass classification. In Advances in neural
information processing systems (pp. 547-553).

[10] Simonyan, K. and Zisserman, A. ”Very Deep Convolutional Networks for Large-scale Image Recognition”. arXiv:1409.1556v6.
¡https://arxiv.org/abs/1409.1556v6¿ This paper introduces the VGG architecture.

[11] Wilkinson, G. G. (2005). Results and implications of a study of fifteen years of satellite image classification experiments. IEEE
Transactions on Geoscience and remote sensing, 43(3), 433-440.

[12] Trohidis, K., Tsoumakas, G., Kalliris, G., & Vlahavas, I. P. (2008, September). Multi-Label Classification of Music into Emotions.
In ISMIR (Vol. 8, pp. 325-330).

[13] Tso, B. C., & Mather, P. M. (1999). Classification of multisource remote sensing imagery using a genetic algorithm and Markov
random fields. IEEE Transactions on Geoscience and Remote Sensing, 37(3), 1255-1260.

[14] Tsoumakas, G., & Katakis, I. (2006). Multi-label classification: An overview. International Journal of Data Warehousing and Mining,
3(3).

[15] Vens, C., Struyf, J., Schietgat, L., Deroski, S., & Blockeel, H. (2008). Decision trees for hierarchical multi-label classification.
Machine learning, 73(2), 185-214.

[16] Zhang, M. L., & Zhou, Z. H. (2005, July). A k-nearest neighbor based algorithm for multi-label classification. In Granular Computing,
2005 IEEE International Conference on (Vol. 2, pp. 718-721). IEEE.

[17] Zhang, M. L., & Zhou, Z. H. (2006). Multilabel neural networks with applications to functional genomics and text categorization.
IEEE transactions on Knowledge and Data Engineering, 18(10), 1338-1351.

[18] Zhang, M. L., & Zhou, Z. H. (2007). ML-KNN: A lazy learning approach to multi-label learning. Pattern recognition, 40(7), 2038-
2048.

[19] Zhang, Y., & Wu, L. (2012). Classification of fruits using computer vision and a multiclass support vector machine. Sensors, 12(9),
12489-12505.

9


