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Abstract

The Amazon rainforest has been subject to accelerating
and aggressive deforestation. Human conservation efforts
have been stifled by limited human and financial capital as
well as inaccessibility of many regions of the Amazon itself -
both for data collection and coordinating on-the-ground ac-
tion. Low orbit satellite imagery may provide an important
monitoring tool to conservationists by predictively labeling
regions of the amazon with evidence of the human footprint.
To help achieve that end, we explore a family of multi-label
machine learning classifiers and successfully obtain an F2
score of 89% on a test set of satellite images from the Ama-
zon rainforest.

1. Introduction

In this project, we identify evidence of human activi-
ties in the Amazon Rainforest, such as road development
or mining, using satellite imagery from the Planet Kaggle
Dataset[1]. This problem is most similar to land cover clas-
sification where each individual example could have mul-
tiple labels (i.e. one or more). The world’s natural habitat
is being rapidly developed, and tools to measure the rate of
environmental destruction fall short. For example, conven-
tional satellite imagery can only resolve to coarse 30m reso-
lution, which makes it difficult to classify what types of ac-
tivity are going on in the images. Planet Labs has super-fine
2-5m resolution data available for the first time[1], which
opens an interesting opportunity to help identify why de-
forestation occurs, predict where it could occur next, and
help identify strategies to combat deforestation. Our plan
is to take the training image dataset, divide it into a train-
ing and validation sets, preprocess the images so the pixel
intensities are normalized, augment the data by introducing
transformations (translations, rotations, flips, jitter, etc) and
experiment with different neural network architectures (and
appropriate loss functions) with different hyperparameters
to determine the best architecture for this dataset based on
the validation F2-score metric.
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2. Background and Related Work

There are several categories of prior work which detail
techniques to classify images with multiple labels. State-
of-the-art (as of early 2017) is using pairwise rankings to
select the top labels to classify an image.[13, 16, 17]

2.1. Multi-Task Learning

One technique is to have a single architecture before a
final fully connected layer, and then from that final layer,
branch into 17 parallel softmax layers used to do classifica-
tion per each label.

A similar class of techniques ranks the labels and then
selects a subset, either through top-k, thresholding, etc. Li
et. al (2017) expand on this by introducing a smoother
(non-hinge) loss function that allows a deep net to converge
faster, obtaining the best results in the literature on a variety
of datasets. We believe this is the most clever technique be-
cause they also treat the thresholding per class as a param-
eter that needs to be optimized (vs. fixing it at .5 for a sig-
moid activation layer, for example). This makes sense when
considering some class labels to be sparse while others may
have pretty high frequency in a training or test dataset.

2.2. Per Label Ensemble

Another technique is to have 17 entirely separate neural
networks perform classification per each label. The advan-
tages are each network can learn intermediate representa-
tions unique to each label. The disadvantages are that it can
be more computationally and memory intensive, and that it
may not capture correlations and cross-label patterns (For
example, perhaps there are often mines near roads).

3. Dataset and Features
3.1. Description and Distribution

We use the dataset from Kaggle’s Planet: Understanding
the Amazon from Space challenge [1]. The dataset con-
sists of over 150K 256 x 256 image tiles labelled with at
least one of 17 classes. Each tile covers a ground-sample
distance of 3.7m. Example classes are primary rainforest,
water, habitation, cultivation, cloudy etc. We have around
40K images in the training set and 60K images in the test set
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Figure 1. Class label distributions, and example images, from the starter notebook in the Kaggle challenge [1]

(as provided by Kaggle). Each image contains RGB values
for each pixel, as well as Near Infrared channels. We use
only the RGB information to classify the images. Figure 1
shows class distribution of the difference labels. As can be
seen, the most common label is primary rainforest, followed
by clear. Images can have only one for four weather labels
haze, clear, cloudy, partly cloudy.

The data presented interesting challenges. First, the dis-
tribution of class labels was heavily skewed, with 2 classes
(primary and clear) occurring in at least 75% of all the train-
ing examples, and the majority of remaining classes barely
represented in the dataset. For example, blow down and
conventional mine only appeared in less than 100 examples
out of 40,000. Since each class prediction is considered sep-
arately in the calculation of the F2-score (and consequently
the loss function), many of our exploratory models tended
to predict the minority classes as always absent and major-
ity classes as always present.

It was discovered through the Kaggle community that the
higher resolution TIF images provided by the competition
organizers were mislabeled. Thus, we only considered the
JPEG files for this project.

3.2. Data Preprocessing and Augmentation

Several techniques were used to help preprocess the data
and improve performance. First, the pixel values were stan-
dard normalized per color channel in order to have cleaner
inputs into the neural net. Second, the data was augmented
by introducing random jitter, cropping, and linear trans-
forms (rotations and flips). Third, we selectively upsampled
training examples which contained underrepresented class
labels. This was challenging with 17 classes - how do you
choose which examples to upsample while still maintain-
ing equal coverage of the classes? We solved this problem
by treating it as a linear optimization problem (constrained
least squares). All the training examples were stacked into
a matrix, M, as columns. We then defined a weight vec-
tor, w, which contained a relative weight of each training
example. Lastly, we defined a target vector, b, which was

just 17 ones, representing each of the class labels. Thus,
wk = argmin,||Mw — b|| represents a linear combina-
tion of all the training examples being as close as possible
to an equal distribution of the classes. In other words, we
are projecting perfect class coverage onto the range of all of
our training examples, finding the closest possible weight
vector w. We constrained the least squares projection fur-
ther by not letting any example be less than of the average
weight of a training example, assuming uniform probability.
Unfortunately, this approach resulted in dramatic overfitting
of our data, with F2 training scores in the 90s and poor val-
idation set performance after a single epoch of training. No
amount of regularization (dropout, etc) was able to success-
fully reduce overfitting, and thus we ultimately removed it
from our data processing pipeline.

4. Methods

In total, we explored several dozen distinct models,
bucketed into 4 major groupings, 6 unique model architec-
tures, and numerous hyperparameter explorations (learning
rate, layer sizes, regularization strength, etc). The 4 group-
ings are - (1) traditional machine learning (boosted trees),
(2) simple multilayer convolutional networks, (3) recursive
convolutional networks, and (4) transfer learning.

4.1. Traditional Machine Learning

Our first baseline was an XGBoost decision tree[18]
trained on aggregate image features. For each color chan-
nel (red, green, blue), we looked at 6 extracted features per
image: the mean, standard deviation, minimum, maximum,
kurtosis, and skewness for each channel, which resulted in a
total of 18 features per image. With 17 possible class labels
per image, we created 17 trees with independent binary lo-
gistic classifiers to determine if each label should be applied
to the image, independently. The trees had a max depth of
5 with 100 estimators per label [25].



4.2. Simple Multilayer Convolutional Network

We also implemented a basic CNN neural network archi-
tecture using two convolutional layers followed by 2 fully
connected layers. Each convolutional layer used a ReLU
nonlinearity, batch-norm and max-pooling layers. In ad-
dition to the convolutional layers the network contained a
linear layer of 2048 units and a final linear layer for the 17
classes. The first convolutional layer had 32 7x 7 filters with
stride of 1 and padding of 2. The second convolutional layer
had 32 3 x 3 filters with stride of 1 and padding of 2. The
flattened vector fed into the first fully connected layer had a
dimensionality of 7200.

To train this network we use Multi Label Soft Margin
Loss, also known as Sigmoid Cross-entropy loss. It is de-
fined as follows. Below, = represents the calculated scores
from the network, and y represents the k-hot encoding of
image labels. We minimized this training loss using Adam
as the optimizer.

loss(z,y) = — & 37 (yi log(r72Zd5) + (1 — i) log( bz

The learning rate, along with other hyperparameters,
were tuned using a random search followed by a grid search.
The reason we chose random search over grid search is be-
cause the loss landscape in deep neural networks with re-
spect to the hyperparameters is often sharp and steep, and a
grid search may miss local optima sitting inside these hid-
den valleys.

4.3. Recursive Convolutional Network

Recursive convolutional networks are a type of deep
neural network architecture which have a repeating, or
recursive layer-blocks.  Essentially, on the downward
branch of the recursive net, activations are passed through
successive convolutional layers and maxpool blocks. Once
the recursion bottoms out at some pre-defined depth,
activations are then scaled up through upsampling to match
activation dimensions of the previous level. This proceeds
in a recursive fashion where lower levels are upsampled and
recombined with the convolutional activation immediately
above it. Recursive convolutional networks are useful
because combining activation maps that are down-sampled
and resampled allow the classifier to integrate multiple
levels of spatial resolution at different steps in the network.
This design has the potential to highlight small details and
enhance their prominence in the upscaled activation maps.

(1) U-Net[26]
The model starts by creating successively downsampled

representations of the input image by passing it through sev-
eral CONV-BN-ReLU-MAXPOOL blocks. The images are

then upsampled to the previous representations resolution
and recursively recombined with each other to form the fi-
nal prediction activations. The U-net is an attractive archi-
tecture choice for two reasons. First, since the U-Net con-
sists heavily of convolutional layers, we reduce the parame-
ter count relative to models consisting of more Dense layers
due to weight sharing. This will be detailed more in the
Dataset section. Second, U-Nets have been shown to work
well on other image segmentation tasks[26], which makes
its cross-application to the domain of satellite images attrac-
tive, where we dont need to spatially segment images but
merely put a binary label if a classification is present. We
believe that an architecture that could be adapted to segmen-
tation tasks may have a positive bias towards detecting fine-
details that would indicate the presence of different classes
in our dataset such as roads and blooming events. Instead
of an Adam optimizer, our recursive architectures achieved
optimal performance with stochastic gradient descent plus
momentum.
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Figure 2. Our implementation of the U-Net architecture.
(ii) Pyramid Net [24]

Pyramid Net is similar to a U-Net, but with the impor-
tant addition of residual short-circuit connections between
recursive levels. The advantage of this is that weights which
end up not transforming the input vector into a node have an
intuitive value of either O or a very small, near-zero number.
This behavior is significantly easier for a network to learn
since the backpropagating error signals can update these
weights more strongly than trying to identify an identity
matrix pattern.

4.4. Transfer Learning

In transfer learning, we take pre-trained weights from
another model architecture, and then modify and re-train
the final layers of the network to make predictions on our
dataset. Transfer learning in computer vision applications
has analogs with word vectors in natural language pro-
cessing. In NLP, word embeddings (derived through a
semi-supervised classification process) captures the seman-
tic meaning of the word as a list of numbers. In a similar
way, pre-trained image networks act as a generalized feature



extractor or encoded that provides high-quality representa-
tions which can be fed to other specialized networks.

We tried several transfer learning implementations. First,
we stacked our own fully connected layers on top of the pre-
trained model layers to perform additional linear and non-
linear operations. Second, we can selectively freeze and un-
freeze previous layers, so the model continues to learn and
update weights, even for the pretrained model architecture.
In this project, we experimented with VGG[3] and Resnet
pretrained models [4, 19].

5. Experiments, Results and Discussion

We implemented our models in Pytorch [18]. We used
the starter notebook from the Kaggle challenge and Python
Imaging Library (PIL) [23] to preprocess the data. We also
used the XGBoost starter notebook from the Kaggle as a
base for our implementation [25].

We primarily use the F2-score (using precision and re-
call) to evaluate the robustness of our models, since this
is a metric that reflects performance on a dataset with un-
balanced classes and was a performance indicator for the
Kaggle leaderboard.

For the XG Boost baseline, the hyperparameters we set-
tled on were a max tree depth of 5, a learning rate of 0.1,
and a classification threshold of 0.5 to convert the logistic
output into a binary indicator. We achieved a baseline F2
score of 0.68 on the dev set, which was submitted to the
Kaggle leaderboard. After being trained on the full train-
ing set, the XGBoost model achieved a test-set F2 score of
88%. Further tuning is likely to improve F2 performance,
but we were satisfied with this as a baseline machine learn-
ing performance metric to measure our CNN implementa-
tions against. Overall, the strong performance of XGBoost
given its simplicity makes it a powerful choice for multil-
abel image classification tasks.

Loss curves and training curves for our first full run of
our baseline CNN is shown below. Our best validation F2
score was 0.84077 and was achieved on the fifth epoch,
which outperformed the XGBoost baseline. Based on our
survey of other participants, we believe that this is on par
with a fine-tuned XGBoost implementation. We used a
learning rate of le-3 and a batch size of 100. The batch-
size was chosen to utilize the amount of available memory
during training.

One primary performance issue that we have observed
so far is that recall is quite high (0.93), while exact match
(0.45)is much lower. While this is expected, we hypothesize
that our CNN baseline is prone to predicting the absence of
a class more frequently, because most examples are only la-
belled with a couple of classes; thus most of the labels will
be false, and the classifier can conservatively reduce its loss
by tending to predict false for many labels. This observation
is supported by the rapidly plateauing loss curve. Further-
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Figure 3. Loss curve

more, there is a significant class imbalance where primary,
clear and agriculture are observed far more often than other
labels. To have a truly performant classifier it will be neces-
sary to penalize our existing loss function more heavily for
mistakes on these minority classes or change our objective
function such that the classifier implicitly understands the
importance these minority classes.
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Figure 4. Recall and Exact match curves
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The relative model complexity of the approaches we
tried is below, measured by the number of parameters. Our
simplest model was a boosted tree ensemble, and our most
complex model was Resnet (via transfer learning).

Model Number of Parameters
XGBoost Depth: 5, Estimators: 100
Baseline CNN 14.8M

U-Net 8.6M

Simple U-Net 13.3M

Pyramid Net (Heng CherKeng)  3.7M

ResNet (retrained Dense) 35K

ResNet (retrain Conv + Dense) — 14.9M

ResNet (Conv + Conv + Dense) 22M

VGG16 TOK

Figure 5. Model complexity of the different models

The results of our various approaches are detailed below.
The best performing models were in the transfer learning
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Figure 6. Sensitivity and recall by class
Model F2-Score  Recall  Exact Match
ResNet (Conv + Conv + Dense) 89.24%  95.39%  58.50%
ResNet (retrain Conv + Dense)  88.48%  95.16% 56.69%
Baseline CNN 85.35% 93.89%  48.74%
ResNet (retrained Dense) 84.81%  93.86% 48.70%
Pyramid Net (Heng CherKeng) — 84.08% 94.02%  46.83%
U-Net 82.41% 93.19% 46.13%
VGG16 82.18% 92.97%  42.33%
Simple U-Net 79.61% 91.70%  37.98%
XGBoost 79.40% 92.24%  39.16%
Simple U-Net (Jacc. Loss) 74.40%  90.82%  32.00%

Figure 7. Validation F2-scores, recall and exact match scores for various models
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Figure 8. Training loss curves and Val F2 curves for various models

group. More specifically, we obtained the best performance
measured by F2 validation score with Resnet 50 when we
unfroze the fully connected layer and the last two convolu-
tional blocks. We employed a learning rate schedule, start-
ing with a high learning rate of le-3. We did this using
an open source Pytorch learning rate scheduler [21]. Ev-
ery time the loss would flatten out, we lowered the learning
rate by an order of magnitude. Using SGD-Momentum(u =
0.9) was crucial to lowering loss below 0.2. LR Decay with
Adam halted progress for early results.

Recursive neural networks seem to perform well on pos-
sibly related tasks (i.e. image segmentation). However, a
standard U-Net implementation was not as performant as a

U-Net with modified residual connections such as Pyramid
Net. Residual connections allow for a clean passthrough of
the input to the output to have zero or near-zero weights,
which is easier to learn than an identity matrix. Unfortu-
nately, our own implementation of a U-Net was not com-
petitive with transfer learning approaches.

Model F2-Score
ResNet50  89.0%
XGBoost  88.1%

Figure 9. Test F2-scores for ResNet50 and XGBoost



Figure 10. Saliency maps for various classes in the dataset

Additionally, the imbalanced dataset caused per-class
sensitivity to vary significantly. Generally, the rarer labels
had poorer sensitivity than the commonly occurring labels.
Boosted trees did a significantly better job of performing
prediction on the rarest labels. Our convolutional networks
were better at predicting semi-rare labels, thus leading to
the slight increase in test-set F2-score. Some of the fea-
tures, like a conventional mine lacked spatial, frequency-
domain characteristics that could be picked up by a convo-
lution. However, they had unique color content which was
very amenable to the statistics features that XGBoost was
trained on.

We also experimented with different loss functions.
Modifying the loss function to include Jaccard distance [7,
8] seems to have been used effectively in other cases, but
our implementation requires more tuning. Jaccard distance
is a penalty that measures how dissimilar the a predicted set
of labels are from the true labels. Our original hope was
that including a Jaccard distance approximation in our loss
function would encourage higher sensitivity across minority
classes and increase the exact match score of our classifier.
This becomes significant when we have a dataset with mul-
tiple labels with nonuniform frequencies. We also looked
at a hard margin multiclass SVM loss function, which ob-
tained inferior performance to the softmax classifier. Due to
the imbalanced nature of our dataset, we believe the hard-
margin loss was able to establish a sufficient margin across
all classes relatively quickly by predicting false for most
minority classes, thus satisfying the constraints of the op-
timization and effectively terminating the learning process
too early.

In general, we observed that this imbalanced dataset re-
sults in classifiers who can safely minimize a significant
portion of the loss by being overly conservative for minor-
ity classes and liberally predict the presence of majority
classes. We hypothesize, this results in a particularly flat
loss landscape, which results in extremely small gradient
error signals that backpropagate through the network. This

causes the weights to not change very much from batch to
batch. Thus, learning rate schedules and proper optimiza-
tion are key ingredients in order to get the network to get un-
stuck and actually learn. We believe SGD with momentum
outperformed the Adam optimizer for this reason — SGD
was able to continue making progress, when the adaptive
function of Adam wouldve reduced the magnitude of sub-
sequent updates.

6. Future Work

We have several planned future experiments. We would
like to train multiple sub-networks that each are for a single
label type. The drawback of this approach is that

We’d like to condition neural architectures on statistical
features. This allows us to capture additional non-spatial in-
formation into our convolutional networks that helped XG-
Boost obtain good validation set performance.

As an experiment in the other direction, we plan to feed
Resnet features into XGBoost, treating the flattened out-
putted vector outside Resnet as analogous to a word em-
bedding in natural language processing.

Wed like to ensemble all high-performing trained models
above an F2 score of 90%. Decisions would be made on
individual class labels based on a majority vote per class.
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