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Abstract

We tackle the problem of multi-label classifying satellite
imagery of the Amazon rainforest in domains including at-
mospheric conditions, terrain, and indicators of human im-
pact in order to survey and prevent deforestation. We use a
deep convolutional neural net, as well as several heuristic
methods and augmentations to the dataset to achieve an ul-
timate F2-score above 0.92. We also discuss existing work
in satellite image classification, F2 score maximization, and
outlier detection for handling noisy data. We further de-
scribe various failed approaches, and the reasons for their
failures; we close with discussion of future work.

1. Introduction

The Amazon Basin accounts for the largest share of
human deforestation, contributing to reduced biodiversity,
habitat loss, climate change, and other devastating effects.
Around 17% of the Amazon rainforest has been lost in the
last 50 years, mostly due to forest conversion for cattle
ranching [2]. Deforestation in this region is particularly
rampant near more populated areas, roads and rivers, but
even remote areas have been encroached upon when valu-
able mahogany, gold and oil are discovered [2]. Without a
method of accurately tracking these patterns of devastation,
solutions are generalized at best - and completely targeting
the wrong areas at worst. To fill in this knowledge gap, we
focus on ways of identifying the marks of human presence
via satellite imagery.

Current approaches to detect deforestation can be
broadly divided into those that compare two images taken
at similar periods of the year and those that monitor
changes by using multiple images taken during the growing
season [3]. The timespan required for these approaches
could be too long and by the time deforestation is detected
using these methods, it may be too late to save the forest.

Machine understanding of satellite imagery can provide
a better idea than traditional methods of how and where
deforestation happens as it happens and can help govern-
ments and local stakeholders respond more quickly and
effectively.

We designed a CNN architecture that analyzes satellite
images to detect patterns that may foreshadow future defor-
estation. Our goal is to detect deforestation on a global scale
before it happens. The input to our algorithm is a satellite
image. We then use a CNN to output predicted atmospheric
conditions, terrains (such as slash-and-burn, rivers, or plain
rainforest), and/or human activity.

Related Work
Similar Applications

We came across a multitude of papers that have con-
structed new architectures or proposed new solutions that
we either implemented or considered implementing and did
not have the time to do so. [5], written in 2015, lays out the
groundwork for satellite image classification, proposing a
large database called DeepSat that would later become the
gold standard for the field.

[6] sets up a poverty metric and uses Transfer Learning
to initialize their weights (along with additional nighttime
data), achieving good results. Their success at transferring
ResNet weights over to satellite image classification has
spurred us to peruse model zoos and try several common
architectures. We tried transfer learning and found that
we did not have the memory to execute it successfully.
The results we got from it were consequently disappointing.

[3] describes a CMFDA algorithm that implements
a year-long, continuous, time-series based approach to
monitoring images. However, the algorithm was developed
for 30m resolution, 16-day frequency reflectance data from
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the Landsat satellite, which is in a different input format
than what we work with.

Examples of real world applications of satellite imagery
usage for deforestation detection include The Real Time
System for Detection of Deforestation (DETER), which has
helped Brazils government to reduce its deforestation rate
by almost 80% since 2004, by alerting the countrys en-
vironmental police to large-scale forest clearing [7]. The
drawback to this system is that it takes a long time to pro-
cess changes in the terrain. They use data from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) on
NASAs Terra satellite, which at its top resolution produces
images with pixels covering an area 250 meters on each side
[8]. This is too big to spot small changes in land cover, so it
can take computer programs weeks or even months to detect
that a forest is being cleared. [9] improved upon this by tak-
ing data from NASAs two active Landsat satellites, which
generates images with pixels of 30 meters on each side, over
8 times higher resolution than MODIS. This enabled them
to recognize a disturbance as small as a road snaking its way
through a previously untouched forest, something that often
appears before clear-cutting begins.

Possible Augmentations

[18] proposes using a spatial-pyramid-pooling (SPP)
model network architecture to analyze images scaled
to various resolutions. Instead of the computationally
expensive procedure of training several deep convolutional
networks on these differently scaled pictures, SPP shares
parameters at initialization and trains its several networks
similarly - cutting down massively on computational cost.
It is still more expensive than a regular, single network
system, however, and in testing did not give us satisfactory
results.

Moreover, the following papers proposed custom thresh-
olding as a method for optimizing F2 score perfor-
mance, which inspired a version of one of our model
augmentations[12] [13] [14] [15].

Finally, ([10] and [11]) that introduce classification im-
provements. [11] identifies a problem in which a model’s
idea of an object’s spatial borders within an image do not
line up to the actual borders, which can cause drops in
accuracy when classifying objects that are small in a given
image. Their solution is to feed a coarse ConvNet’s output
into a Residual Neural Network. [10] goes into various
methods that can be used to mitigate the obscuring effect of
cloud cover, which is a factor in many of our images.

Multitask Learning

While the restrictions on some of the labels may sug-
gest that we just learn to predict the labels separately, [4]
strongly suggests that our model can significantly benefit
from learning to predict the tasks jointly. The intuition for
this phenomenon is that the network can learn representa-
tions which capture information shared between the tasks,
allowing it to generate a more complex model which gener-
alizes better to the multi-task objective.

Dataset
Our data comes from Kaggle and is sourced from Planet,

a company that designs and builds the worlds largest con-
stellation of Earth-imaging satellites [20]. The dataset con-
sists of 40,479 labeled training images (split into 35000
training, 5479 validation) given in both JPG and TIF for-
mats, and a preliminary test set of 40,668 images, which
Kaggle evaluates our performance on without revealing the
labels. The images are provided in 256x256 pixel reso-
lution, each representing a roughly 973x973 plot of land.
There are 17 labels in all, and labels occur with frequen-
cies ranging from over 90% (primary) to less than 1%
(mining, slash and burn, blowdown). Four of the labels
(”cloudy”, ”partly cloudy”, ”haze”, ”clear”) correspond to
weather patterns, and only one of these may be assigned.
Moreover, no labels are assigned at the same time as the
”cloudy” label. Notably, the labels are slightly noisy, due to
the ambiguity of some classes, as well as errors in human la-
beling. In the words of the Kaggle competition poster, ”part
of the challenge of this competition is to figure out how to
work with noisy data”.

Preprocessing

The images are scaled down to 64x64 pixels before be-
ing input into our model. We further augment our dataset
by performing the following transformations before train-
ing time:
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Figure 1. Four examples from our training set. Top left: agricul-
ture, clear, primary, slash burn, water. Top right: cloudy. Bottom
left: artisinal mine, bare ground, clear, primary, water (likely mis-
labeling). Bottom right: agriculture, clear, primary, road.

• Horizontally and vertically flipping the image at ran-
dom;

• Horizontally shearing the image by a factor uniformly
distributed between 0 and 0.1;

• Randomly shifting the image in both the horizontal and
vertical direction, by a number of pixels uniformly dis-
tributed between 4 leftward and 4 rightward;

• Rotating the image a random amount.

Note: In particular, we did not choose to apply random
zooming to our images, since in our dataset, pixels corre-
spond to fixed physical sizes.

Model
Evaluation

We evaluated the performance of our model using the
Kaggle competition’s metric, the F2 score, which is calcu-
lated as follows:

F2 = (1 + β2)
pr

β2p+ r
, β = 2

with p the precision (ratio of true positives to predicted
positives) and r the recall (ratio of true positives to all posi-
tives. This score is just a weighted measure of the precision
and the recall; in particular with β = 2 we have recall more
important than precision. To be specific, in our calculation

of recall and accuracy, we consider the prediction of each
individual label to be a separate task.

Base Architecture

Following the poor (relative to the leaderboard) per-
formance of our simple starter network, we drastically
expanded the layer counts, filter counts, and overall size of
the network. Given that we could only put 4 max-pooling
layers when using 64x64 sized images, we used a network
that progressively increased the number of filters in layer
convolutional blocks. We also used pairs of convolutional
layers in series to remedy our padding issues; the first layer
in each pair is padded such that the output size is equal to
the input size while the second layer shrinks the output.
All max pool layers are 2x2 pool stride 2 layers, while
all dropout layers unlink 25% of all input neurons. We
progressively increase the number of filters in each convo-
lutional block (except the third due to memory concerns) to
increase the number of high-level features learned by the
network; this is a progressive increase to limit the amount
of parameters that would be used otherwise. This archi-
tecture served us well in breaking past 0.91 on our F2-score.

To handle the multi-class, multi-label objective, for each
image we predict a score for each label and minimize the
binary cross-entropy loss across all labels. We determine
whether to assign a label based on whether the associated
score exceeds a constant threshold.

During each of the training runs, this architecture is first
trained with a binary-cross-entropy loss, discarding outlier
images. Once finished, we lower the learning rate and train
based on a modified loss function that adds the binary-cross-
entropy loss with a custom F2 score loss that we created.
This heuristic has empircally given us consistent small gains
in both validation and test F2 scores.

Augmentations

This section details various modifications we make to
our base neural net to improve our F2 score.

Determining the Prediction Thresholds for F2 Score

Our base model only learns to minimize the cross-entropy
loss between its predicted scores and the true labels. In
order for the model to actually make predictions, for each
class it must determine a threshold for which a score higher
than the threshold corresponds to a positive prediction and
a score lower than the threshold corresponds to a negative
prediction. These parameters are not part of our model,
and attempting to optimize these by some analytic means is
extremely difficult. Therefore, we determine these thresh-
olds empirically: for each class we determine the threshold
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Figure 2. The architecture of our model.

which maximizes the F2 score on a small validation set by
brute-force computing the score at threshold values of 0,
0.001, 0.002, etc.

Handling Noisy Data: Removing Outliers

We follow a variation of the approach in [23], which is in
turn based on a simple variation of the k-nearest-neighbor
algorithm, to cope with potentially mislabeled data. In par-
ticular, we performed the following process:

• Train the model for some number of epochs. Once
the model is sufficiently trained, the values in its later
layers may be interpreted as representations in some
feature space.

• Append 17 extra dimensions corresponding to the 17
labels to the feature space, with an image’s entry in
each coordinate equal to 0 if it does not have the la-
bel, and λ if it does. The intuition here is that if the
data are mostly separated in this feature space, they
should cluster strongly in the label-augmented space.
Then any mis-labeled data will be very far from other
members of both its label and its true class, and λ is
a parameter that describes how strongly we weigh the
importance of being an outlier in the original feature
space against the importance of being an outlier in the
label-augmented space.

• Compute the distances between all the points in this
feature space, and find the n points which maximize
the sum of distances to the k nearest neighbors.

• Remove these n points from the dataset and resume
training.

In particular, we execute this process with n = 500 (i.e, re-
moving only 1.2 percent of the dataset), k = 10, and λ =
23.

Model Ensembling

We trained 3 separate instances of our model, and took
the mean of the predicted scores before performing our F2
thresholding heuristic. This did not result in a consistent
net increase on our strongest model, however, it consistently
provided about +.015 on simpler versions of our model.

Results and Discussion
One of our final models achieved an F2 score of 0.923 on

Kaggle’s hidden test set, resulting in a ranking of 72nd on
the Kaggle leaderboard; moreover, we achieved scores as
high as 0.94 on our validation set. To provide context and
scale to the results, the top-ranked entry as of 12 June 2017
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has a score of 0.9333, and the difference between consec-
utive entries near the top is very often between 0.0001 and
0.0005. The following figure describes the rough benefit
obtained by each approach:

Agent F-score
Baseline - Starter Code .84
Improved Architecture .901

F2 Thresholding Heuristic +.007
Batch Normalization, Global Average Pooling +.004

Dataset Augmentation +.003
Outlier Removal +.004

Model Ensembling +0
Table 1. Scores Achieved by Various Augmentations (in order)

Failed Approaches

Given that the weather labels were mutually exclusive,
we attempted to restrict the weather labels to a single pre-
diction using a separate CNN whose scores were converted
to predictions with a different scheme. We hypothesized
that this might work in particular because the weather fea-
tures were likely to be a function of fundamentally different
patterns from the other features- e.g, hazy weather is a func-
tion of the whole image being brown, whereas the presence
of a river is a local feature. However, this approach did not
succeed in practice. One straightforward reason for this is
the fact that the F2 metric penalizes false negatives more
heavily than false positives. Therefore, there are many sit-
uations where it may be better for the expected F2 score
to predict two labels, guaranteeing a false positive to hedge
against the risk of a false negative. Moreover, in separating
the weather labels, we lose out on the benefits of multitask
learning, as described in [4]- our model for the non-weather
labels now does not implicitly learn features specific to each
weather type.

We also quickly experimented with removing labels on
the instances marked ”cloudy”, as well as with normalizing
the weather class scores so that they would sum to 1, be-
fore computing the F2 thresholds. These approaches failed
for similar reasons- presumably, the unnormalized weather
class scores were actually distributed more appropriately for
maximizing the F2 score.

Weaknesses of the Model

The distribution of the predictions show two key differ-
ences between what our model predicts and the true labels.
First, a few labels are almost never predicted: ”slash burn”,
”conventional mine”, ”blow down”, and ”blooming”. This
is most likely because there are very few training images
with these labels (209, 100, 101, 332 respectively) , and
so the model cannot properly learn the features that corre-

Figure 3. Distribution of our model’s predictions on the training
set. It differs quite notably from the base distribution.

spond to those labels. Second, each of the other labels are
predicted much more often than they should be. This can
be explained by the fact that the F2 score penalizes false
negatives much more heavily than false positives and so the
model compensates for that by simply predicted more la-
bels to attempt to reduce the number of false negatives. For
example, images with the true label ”haze” almost always
have a ”cloudy” prediction as well, presumably because the
two atmospheric conditions tend to look fairly similar and
so our model maximizes the expected F2 score by simply
predicting both.

More broadly, since our model is not an excellent
approximator of the original distribution of labels, even
though it achieves a high F2 score, in practice it may not
be very useful in a variety of situations. Obvious exam-
ples from our analysis include situations where it is rel-
atively important to predict rarer labels, or situations that
more heavily penalize false positives.

Future Work

Exploiting the Label Correlations

Although it is theoretically possible for a multitask network
to learn relationships between the classes, when working
with a dataset of limited size it should be helpful to more
explicitly encourage the network to make use of our prior
information- e.g, the empirical co-occurrence of classes, as
well as the fact that the weather classes are mutually exclu-
sive and the cloudy label is exclusive.

Broadly, we can think of two simple classes of methods
for doing this:

• Add components to the loss which slightly penalize
having high scores in two weather classes, as sug-
gested by [15]. As a concrete example, one could
add to the loss some constant times the product of all
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Figure 4. The model does not have enough training images with
the ”conventional mine” label to learn the corresponding features
and so predicts ”water agriculture habitation” instead of ”conven-
tional mine”

Figure 5. The model correctly predicts ”clear” and ”primary”, but
does not recognize ”blow down”, the rarest label of which the
training set only contains 101 examples.

weather class scores for each training sample. This
quantity would be low when all weather class scores
are high, and high when multiple weather class scores
were medium.

• Train for the labels in a hierarchical structure, for ex-
ample, by first training a network that predicts the
weather label scores (not necessarily exclusively), and
then either using the weather label scores as inputs to a
second network, or using a different network for each
weather label. (We experimented with this briefly, but
abandoned the approach due to the limitations of train-
ing time and memory.)

Different Architectures

We mostly only explored approaches involving sequential
neural nets, but some other competitors such as [26] showed
good results with non-sequential structures. In particu-
lar, [26] uses a structure which passes both shallower and
deeper convolutional layers as inputs into a higher sequence
of convolutional layers, and uses many of these as inputs to
an affine layer. The intuition for this kind of approach is that
the final classifier may be able to more explicitly make de-
cisions based on lower-scale features such as textures and
visually small features, such as the texture of trees in the
”primary” or ”cloudy” label or the presence of tiny blooms
for the ”blooming” label.

Transfer Learning

Since our training set is not massive, it might help to adopt
some of the early-middle layers of a known image classifi-
cation model to improve initialization.

Conclusion
From our results, we note that standard multi-task

sequential convolutional neural network architectures
perform quite well at detecting atmospheric conditions
and the human impact on nature from satellite data. The
models we built took mere hours to train, compared to
previous examples of deforestation detection methods
that relied on processing MODIS or Landsat images from
days to months; this opens up a tremendous wealth of
possiblities for data analysis that we are all excited to
see. Additionally, while the potential to greatly reduce
the amount of human effort needed to locate areas of
human impact anywhere around the world is fantastic, our
techniques are generalizable to many image classification
problems that may have been neglected thus far. We look
forward to using the experience gained from building and
tuning our model to explore the field further and refine the
field of analytical satellite imagery.
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