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Abstract

In order to appropriately treat cervical cancer, mak-
ing an accurate determination of a patient’s cervical type
is critical. However, doing so can be difficult, even for
trained healthcare providers, and no algorithms currently
exist to aid them. Here, we describe the development and
implementation of a convolutional neural network-based al-
gorithm capable of distinguishing between three cervical
types. Our approach extends standard transfer learning
pipelines for fine-tuning a deep convolutional neural net-
work, specifically a residual network (ResNet), with cus-
tomized data augmentation and model ensembling tech-
niques. Our algorithm achieves an accuracy of 81% on
our internal test set and a multi-class cross-entropy loss of
0.557 on the Kaggle test set, resulting in a leaderboard po-
sition of 25th out of over 800 teams, as of June 12, 2017,
with three days left to finalize model submissions.

1. Introduction
Cervical cancer is the fourth most common cancer

worldwide, with roughly 600,000 new cases and 300,000
deaths annually [1]. While most cases of cervical cancer
can be prevented with timely screening, and even cured with
appropriate treatment, selecting the most effective treatment
depends on the anatomical type of a patient’s cervix – in
particular, the type of transformation zone (TZ) of their
cervix. Under the current classification, there exist three
types of TZs (1, 2, and 3), which can be distinguished from
each other visually, via coloposcopy [2].

Accurate determination of a patient’s TZ type is critical
in order to guide appropriate treatment. Indeed, a physi-
cian who incorrectly classifies a patient’s cervix and then
performs an inappropriate surgery may fail to completely
remove the malignancy, or may even increase their patient’s
future cancer risk by forming scar tissue that obscures fu-
ture cancerous lesions [2]. However, determining the type
of a patient’s TZ from a cervigram image can be difficult,
even for trained healthcare providers using colposcopy, and
no computer vision-based algorithms or classifiers currently

exist for this problem. Such an algorithm could be used for
clinical decision support, thus greatly facilitating providers’
workflows, especially in rural settings and in developing
countries where resources are scarce.

Using data released as a part of a Kaggle competition
[3], we aim to create a convolutional neural network-based
algorithm to classify cervical TZ type from cervigram im-
ages. Our approach, given the limited availability of these
data, is based on transfer learning [4–7], wherein we fine-
tune to our data a type of deep neural network, specifically a
residual network (ResNet) [8] pre-trained on the ImageNet
classification task [9].

2. Related work
Deep learning, and convolutional neural networks [10]

(CNNs) in particular, are as of late increasingly finding wide
application in the field of medical image analysis. Specific
applications of these algorithms include classification [11–
13], object detection and anatomical localization [14–16],
segmentation [17–19], registration (i.e., spatial alignment)
[20], retrieval [21], and image generation and enhancement
[22].

In medical image classification, the inputs are often one
or more photographs or scans (CT, MRI, PET, etc.) belong-
ing to a patient and the output is some kind of disease or
anatomical status associated with that patient. For example,
retinographs can be used to stratify a patient with diabetic
retinopathy into one of seven or eight grades corresponding
to the severity of their disease [11].

CNN-based approaches to medical image classification
problems have taken advantage of two transfer learning
strategies which predominate in the literature: 1) fine-
tuning a CNN pre-trained on a large, generic image dataset,
such as ImageNet; or 2) using a similarly pre-trained CNN,
but as a fixed feature extractor (FFE), by freezing all but its
last FC layer before tuning it to the data corresponding to
the task of interest. These approaches are motivated by the
dearth of the large volumes of task-specific medical image
data required to robustly train a CNN from scratch. While
many image classification tasks in the medical domain are
more narrowly focused in scope compared to the ImageNet
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task, the generic features learnt by networks trained on Ima-
geNet appear to generalize well to medical and other image
classification tasks.

There appears to be no consensus in the literature as
to whether fine-tuning a CNN outperforms CNN-as-FFE
in this domain. Indeed, the few currently extant papers
that do report the results of both approaches [23, 24] have
reached conflicting conclusions, with [23] finding that ap-
proach (1), fine-tuning, outperforms approach (2), CNN-
as-FFE, in classification accuracy, and vice versa in [24].
Notably, recent landmark papers in the medical image clas-
sification field [11, 13], have relied on fine-tuning a pre-
trained CNN based on the Inception-v3 architecture [25],
achieving near-expert performance on diabetic retinopathy
and melanoma classification tasks. Fine-tuned, pre-trained
Inception-v3 CNNs have also been used to classify and de-
tect metastases on gigapixel breast cancer pathology images
[12].

However, CNNs have yet to be widely applied to image
classification tasks specifically motivated by cervical can-
cer. Standard feedforward networks have been used to de-
tect abnormal cells in Pap smears, with the aim of assisting
cervical cancer screening [26]. More recently, cervigrams
have been classified and segmented using classical machine
learning methods, such as SVMs relying on PHOG features
[27] and KNNs [28]. In two cases, CNNs have been ap-
plied to cervigram analysis: [29] and [30] used a pre-trained
AlexNet [31] to classify cervigrams in order to aid the di-
agnosis of cervical dysplasia. However, no prior work that
investigates the problem of cervical TZ classification ap-
pears to currently exist. We note that, in contrast with much
past work in the cervical image analysis domain, however,
the end goal of this task is not necessarily to aid diagnosis,
but to help guide treatment by enabling healthcare providers
to make more accurate determinations of a patient’s cervix
type in order to select the appropriate treatment of their cer-
vical cancer.

3. Dataset

3.1. Overview

The data are drawn from the Intel/MobileODT col-
poscopy image database, which contains 8,215 labeled im-
ages, in addition to an unlabeled leaderboard test set of
512 images. These 8,215 images, which we used to form
the train/validation/test data splits, can be divided between
a base set, consisting of 1,481 images, and an additional
set of 6,734 images. There are three classes corresponding
to the three types of cervical TZs, and their distribution is
given in Table 1. Nearly all images in the dataset are present
in one of three resolutions: 2448 × 3264, 4160 × 3120, or
4128 × 3096. All images are in .jpg format and in color
using a RGB color profile.

The cervigram images in the dataset depict the cervix as
viewed through a colposcope, and so tend to be magnified
and fully illuminated. Exemplars representing each of the
three types of TZs are shown in Figure 1. The region of
interest corresponding to the TZ is in the center of the im-
age, circumscribing the opening (external cervical os) that
connects to the uterus. In many images, the speculum used
to dilate the vagina (so as to aid visualization) is also vis-
ible, and in some cases, it partially occludes parts of the
cervix. There is also considerable variation in the extent of
vignetting, which can be seen in Figure 1.

Figure 1: Exemplars of the three types of cervical TZs rep-
resented in the dataset.

Type 1 Type 2 Type 3

Base train set 250 781 450
Additional train set 1,191 3,567 1,976

Total 8,215 images

Internal train set 30% base + 100% additional
Internal validation set 50% base

Internal test set 20% base
External test set 512 images, unlabeled

Table 1: Distribution of the three classes in the dataset. Note
that the percentages in this table refer to our alternate data
splitting strategy; refer to §3.3 for more details.

3.2. Data noise and heterogeneity

In order to characterize the extent of heterogeneity
present within our dataset, we initially performed an ex-
ploratory data analysis of the images, focusing principally
on clustering the images using t-SNE [32] to characterize
the extent of heterogeneity present in the data. An exam-
ple output from a t-SNE run is presented in Figure 2; due
to computational considerations, and to facilitate visualiza-
tion, we worked with relatively small samples of data. We
were able to identify several sources of heterogeneity in the
data via our EDA. In particular, these sources include 1)
image duplication; 2) non-cervix images; and 3) variation
in appearance due to staining of the cervix, e.g. with iodine
or acetic acid.
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We found that duplicate images tended to occur via one
of two mechanisms: either multiple images were taken of a
single patient’s cervix as a part of the same examination, al-
beit in slightly different poses; or the cervix was re-imaged
using a green filter attached to the colposcope. Examples of
these types of duplication can be seen in Figure 2, particu-
larly in the northwest quadrant of the figure. It is worth not-
ing that the presence of duplicate images was mostly limited
to the additional training data set rather than the base train
set.

We initially believed that the green images were the re-
sult of data corruption or some other abnormal process, but
we found that using the green filter allows the doctor to
more easily visualize malignancies and other lesions. As
such, while we had considered excluding these images from
the data, we now recognize these as plausible input to the
algorithm.

Our EDA also identified non-cervix images, including
images of what appear to be some kind of plastic drape,
a Motorola logo, and even of a face – which can be seen
towards the right side of Figure 2. These non-cervix images
– five in total – were manually removed from our dataset.
Finally, we also identified images where the cervix appeared
to be stained with either acetic acid or an iodine solution –
techniques used to aid the visualization of lesions.

Figure 2: Results of t-SNE embedding of a sample of the
data, performed as a part of our exploratory data analysis,
indicating significant heterogeneity.

3.3. Dataset splitting

Originally, all 8,215 images were partitioned to form the
initial split of the data into train, validation, and test sets
in a 70:20:10 ratio. However, we found that duplicate or
near-duplicate images from the same patient tended to pre-
dominate in the “additional train set” (Table 1), which was
provided separately from the “base train set” by Kaggle.

With a naive partitioning of the data, we found that these
duplicate images were present in either both the train and
validation sets, or the train and test sets, representing an
example of data leakage that afforded overly optimistic es-
timates of the true Kaggle test set loss. Over the course of
our experiments, we investigated an alternative split which
partitioned the provided data such that the internal valida-
tion and test sets contained only images from the “base train
set” (see Table 1). This change of data split was motivated
principally by a desire to obtain more reliable estimates of
the Kaggle test loss.

In this paper, we refer to this alternative split as the alter-
nate data split (ADS), and consists of a split that partitions
the “base train set” of 1,481 images into train, validation,
and test sets in a 30:50:20 ratio, and all 6,734 images in the
“additional train set” were allocated to the train set. Un-
less otherwise specified, all results presented correspond to
those obtained with the alternate data split, as we found that
such results were more representative of performance on the
Kaggle test set.

4. Methods

4.1. Overview

Our approach to the problem of cervix TZ classification
relies principally on transfer learning, using 18- and 34-
layer deep residual networks (ResNets) [8, 33]. ResNets
resemble deep convolutional neural networks in overall ar-
chitecture, but with one key difference being the presence
of skip connections between blocks of convolutional layers
(Figure 3). These skip connections enable the blocks in the
network to learn the residual mapping F(x) = H(x) − x
for some input x, rather than the full mapping H(x). The
input x is simply carried forward, unmodified, through the
skip connection and added to the output of the block, F(x).
While both maps are asymptotically approximately equiv-
alent [8], the residual mapping may prove easier for the
network to learn than the identity. While this subtle in-
sight has proven fruitful, recent evidence has shown that
ResNets appear to behave like ensembles of exponentially
many relatively shallow networks [34]. This behavior could
explain the performance characteristics of ResNets and their
relative ease of training – the latter which has already in
part been explained by their avoiding the vanishing gradi-
ent problem encountered in deep networks, thanks to these
skip connections. The architectures of the two ResNets we
tested in our experiments are shown in Table 2.

All methods were implemented using PyTorch [35, 36]
and trained on 1 to 4 × NVIDIA Tesla K80 GPUs on a
Google Cloud virtual machine.
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Figure 3: Schematic of the basic building block of a ResNet.
Note the “skip connection” that preserves and adds the iden-
tity map to the outputF(x) of the block to obtainF(x)+x.
Figure taken from [8].

ResNet-

Block Output size Layer(s) 18 34

conv1 112× 112 [64 7× 7 filters] × 1 1

conv2 56× 56
3× 3 maxpool × 1 1[

3× 3, 64
3× 3, 64

]
× 2 3

conv3 28× 28

[
3× 3, 128
3× 3, 128

]
× 2 4

conv4 14× 14

[
3× 3, 256
3× 3, 256

]
× 2 6

conv5 7× 7

[
3× 3, 512
3× 3, 512

]
× 2 3

avgpool, FC (1000→ 3), softmax

Table 2: Architectures of the two ResNets tested. The first
layer in each conv* block (including conv1 itself) per-
forms downsampling with a stride S = 2. Batch normaliza-
tion [37] is also applied to the output of each convolutional
layer, and ReLU nonlinearities [38, 39] are also then applied
to the batchnormed output of each convolutional layer in
each block. The skip connection incoming into each block
is added to the output of the second convolutional layer,
right before the second ReLU nonlinearity (see Figure 3).
Modified from [8].

4.2. Image preprocessing

4.2.1 Basic preprocessing

All images were scaled off-line such that the smaller dimen-
sion had length 256 pixels. This significantly sped up train-
ing time, due to the lower computational cost incurred. Our
basic image preprocessing pipeline at train time proceeds as
follows:

1. First, training images were cropped at a random loca-
tion to extract a 224× 224 region.

2. We then applied a random horizontal flip with proba-

bility 0.5.

3. Finally, the images were normalized channel-wise, us-
ing the ImageNet statistics, to have mean±standard
deviation 0.485 ± 0.229 for the red channel; green,
0.456± 0.224; and blue, 0.406± 0.225.

At test time, the images were pre-scaled to have the
length of their smaller dimension be 224 pixels, and then
center cropped. For step (3), we also experimented with
dataset-specific normalization statistics, which were com-
puted based on the images in train set, but found no signifi-
cant variation in validation or test performance.

4.2.2 Augmented preprocessing

As a form of regularization, we experimented with a more
comprehensive set of transforms, described below in the
data augmentation techniques. Applying these transforms
to the images in each training minibatch at train time was
computationally expensive, increasing the time per epoch
by a factor of two or more, even when applied to pre-scaled
images as in the basic preprocessing strategy.

To allow for faster training, the images were instead
transformed in advance and stored as a separate, augmented
dataset. Each image was loaded, transformed and saved 10
times for images in the main training set, and 3 times for
images from the additional dataset. All transforms were
applied randomly and independent of each other to each
image. As a code basis, we used the torchsample li-
brary for PyTorch [40], in addition to the standard PyTorch
transforms, and then modified and extended it in order
to accommodate the types of augmentations desired.

Data augmentation strategy

• Pad the long edge by 20% on each side and the short
edge to match the long edge, resulting in a square im-
age;

• Flip, either horizontally or vertically, or both, with
both types of flips having independent probability 0.5;

• Rotation, at random, by an angle −180 ≤ θ ≤ 180
degrees;

• Translation, at random, by up to 5% in either dimen-
sion;

• Zoom, into the image, randomly cropping the center
0.45 to 0.80 region;

• Scale, to a square 224× 224 image.

Finally, a center cropped 224 × 224 version of the non-
augmented data was added to the augmented dataset in or-
der to avoid overfitting to the transformed data. The train
time preprocessing pipeline for augmented images con-
sisted of:
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1. First, the 224 × 224 images were padded by 16 pixels
on all sides.

2. Next, training images were cropped at a random loca-
tion to extract a 224× 224 region.

3. We then applied a random horizontal and vertical flip
with probability 0.5, each.

4. Finally, the images were normalized channel-wise, as
in the basic preprocessing step (3).

4.2.3 Data ensembling

As deep convolutional networks may learn to distinguish a
certain object type only under certain image conditions, un-
related to the actual physical properties of the object, we
experiment with a technique that we call “data ensembling”
to minimize the impact of such effects. Under this tech-
nique, we the apply the data augmentation strategy, outlined
in §4.2.2, to ten replicates of the test images and then pool
the resulting augmented images with center-cropped ver-
sions of original test images. Thereafter, we classify each
of the 11 resulting images and average the class label prob-
abilities over the images having the same origin image. An
additional goal of this technique is the smoothing of over-
confident model predictions.

4.3. Experimental conditions

Our main experimental conditions are summarized as
follows:

• ResNet-18, random initalization (ResNet-18-RI)

• ResNet-18, fine-tuned (ResNet-18-FT)

• ResNet-34, random initalization (ResNet-34-RI)

• ResNet-34, fine-tuned (ResNet-34-FT)

We define fine-tuning to be a transfer learning procedure
wherein the weights of a pre-trained network are loaded,
the output projection layer replaced with one of the correct
size for the new task, and then the entire network trained
as usual. For random initialization, we simply train the en-
tire network from scratch without loading any weights of a
pre-trained model. Using the pre-trained network as a fixed
feature extractor was briefly explored, but we abandoned
this approach as these models appeared to lack sufficient
representational capacity for cerical TZ classification.

For the four architectures and choices of initalizations
above, we initially performed a coarse random hyperparam-
eter search [41] over the learning rate and the L2 regular-
ization constant λ. We then expanded our experiments to
include step-based learning schedules, as well as to inves-
tigate finer random grids of learning rate and λ. We also
investigated other architectures, including SqueezeNet [42]

and Inception-ResNet [43]. In total, we ran over 200 exper-
iments.

For all networks, we used the Adam optimizer [44] with
β1 = 0.9, β2 = 0.999, and ε = 1× 10−8. We used a mini-
batch size of 64 in all experiments. We also tested an op-
timizer that used SGD with Nesterov momentum [45, 46],
but found that it consistently yielded slower convergence
compared to Adam.

4.4. Model ensembling

Combining classifiers in an ensemble to create predic-
tions is a long-used technique in machine learning [47, 48]
to produce more stable and less overly confident estimates
of class probabilities. Recently, with the increasing avail-
ability of cheap compute, ensembles of CNNs appear to be
coming into vogue, especially in the medical image analy-
sis field [49, 50]. Label smoothing (as in §7 of [51]) or a
maximum-entropy based confidence penalty [52] can also
be used to regularize model outputs, but we chose not to
investigate them further at this time.

With this in mind, we also tested the following collection
of model ensembles, with the aim of improving the gener-
alization of our models and ultimately the performance on
the Kaggle test set. We also computed performance metrics
(detailed in the next subsection) for each ensemble on the
test set.

First, we define the Mean-of-top-K-models ensembles.
Under this strategy, the top K models that achieve the low-
est validation loss are used to independently make predic-
tions on the test set. For each image in the test set, the mean
of the predicted probabilities for each class across the K
models are used as the resulting predicted probabilities for
the ensemble. The composition of the ensembles investi-
gated further are as follows:.

• K = 5: 3 × ResNet-18-FT. 2 × ResNet-34-FT.

• K = 7: 5 × ResNet-18-FT, 2 × ResNet-34-FT.

• K = 10: 8 × ResNet-18-FT, 2 × ResNet-34-FT.

We additionally explore the idea of a Diverse Ensemble,
which we define as a mean ensemble constructed as above
with the highest performing single model of a diverse set of
model classes (in this case, the models listed in the upper
section of Table 3).

4.5. Evaluation metrics

In addition to monitoring model performance over the
course of each experimental run, we also saved the best-
performing model checkpoints from each run and used them
to generate predictions and performance results on the inter-
nal test set, as well as on the external Kaggle test set. Fol-
lowing hyperparameter tuning, we do not retrain the model
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with the combined training and validation set and instead
directly utilize the checkpoint obtained during training.

The classification results of our models are evaluated
principally using the multi-class log loss (or cross-entropy
[CE] loss):

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij),

where N denotes the number of images in the test set, M
the number of classes, yij the ground truth label that im-
age i belongs to class j, and pij the predicted probability of
image i belonging to class j. As a part of the model devel-
opment process, we tracked this CE loss and used it to com-
pare models and tune hyperparameters. We also computed
class-level F1 scores for prediction on the internal valida-
tion set. The F1 score is defined as

F1 = 2× precision× recall
precision + recall

,

and can be interpreted as a weighted mean of precision and
recall that weighs both equally. Finally, we also computed
and tracked the overall accuracy across all three classes of
each of our models.

5. Results
5.1. Hyperparameter tuning experiments

We carried out the random hyperparameter search pro-
cedure, as previously described in §4.4, to train over 200
models of various architectures, primarily ResNet-18 mod-
els and ResNet-34s. The distributions of the minimum vali-
dation loss achieved over the course of each experiment for
each condition (model × initialization) are shown in Fig-
ure 4. Overall, these results indicate that the fine-tuning
(FT) approach outperforms training from a random initial-
ization (RI), and that training with the use of data aug-
mentation appears to reduce generalization performance for
both the ResNet-18 and the ResNet-34 models. Qualita-
tively, the centroids of the distributions of validation loss
for the ResNet-18-FT and the ResNet-34-FT procedures are
roughly equal, but the ResNet-18 appears to achieve valida-
tion losses that outperform that of the best scoring ResNet-
34. However, given that 89 experiments were performed
with ResNet-18-FT, compared to only 21 with ResNet-34-
FT, we believe that training the ResNet-34 further, and per-
forming a more fine hyperparameter search would likely
yield performance characteristics competitive with those of
the best ResNet-18 trials.

The SqueezeNet, which we trained from a pre-trained
state only, did not appear to perform well compared to the
other models. Furthermore, the Inception-ResNet-v2 failed
to generalize, consistently achieving validation losses well
above 1.0.

Figure 4: Distributions of the minimum validation loss
achieved with each condition (architecture × initialization)
over the course of our experiments. The white circle in-
dicates the location of the mean of each distribution. The
numbers in parentheses indicate the number of experiments
performed with each condition. Abbreviations: FT: fine-
tune, RI: random initialization.

Representative examples of the training-time loss dy-
namics of two high-performing ResNet models are given
in Figure 5(a). In both cases, the model noisily attains a
minimum of validation loss (ResNet-18-FT min. validation
loss 0.688; ResNet-34-FT min. validation loss 0.689) early
on in training (often around epoch 20), and as it begins to
train, goes on to overfit, as evidenced by the training loss
steadily approaching zero, and the validation loss plateau-
ing, or even increasing, as in the case of the ResNet-34. It
is interesting to note that, in both cases, the class-level F1

scores (Figure 5(b)) on the validation set continue to im-
prove, even as the models overfit the training set. We sus-
pect that this is a result of overconfident incorrect predic-
tions leading to increase in the validation cross-entropy loss
without a significant change in the identity of the labels that
are predicted. However, the observation that the validation
loss of the ResNet-18 stabilizes, taken with its less noisy
validation F1 scores compared to those of the ResNet-34,
suggest that using a shallower – and thus less complex –
model affords a greater extent of training stability.

5.2. Performance on internal test set

5.2.1 Single models

For each model class, the parameters of the model that at-
tained the minimal loss on the validation set were saved and
used to generate predictions on the internal test set. The
test-time F1, accuracy, and loss for each of those models are
shown in Table 3. These results demonstrate that the high-
est performing single model is the ResNet-34 with whole
network fine-tuning, as it attains a test set loss of 0.70 and
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(a) Training and validation loss dynamics for ResNet-18 and ResNet-34
models that underwent whole-network fine-tuning. These trajectories are
representative of those models which attained high performance on the val-
idation set.

(b) Class-level F1 scores on the validation set for both models shown in (a).

Figure 5: Training and validation loss (a) and class level F1

scores (b) for 18 and 34 layer ResNet models that under-
went whole network fine tuning.

class-level F1 scores of 0.71, 0.80, and 0.67 for Types 1, 2,
and 3, respectively.

Overall, it is clear that fine-tuning an already pre-trained
model is a more fruitful strategy compared to training from
a random initialization, as both the ResNet-18 and ResNet-
34 see a large boost in performance between the two ini-
tialization strategies (ResNet-18-RI min. test loss: 0.97 vs.
0.77 for FT, ResNet-34-RI min. test loss: 0.79 vs 0.70 for
FT). However, it is interesting to note that training from a
random initialization still appears to yield reasonable per-
formance in the case of the ResNet-34, where it achieved a
loss of 0.79, which compares well with the loss of 0.77 that
was achieved by the fine-tuned ResNet-18.

5.2.2 Data Augmentation

Data augmentation was explored in both the context of cre-
ating an augmented set of training data and in the context
of “data ensembling”, as previously discussed in the meth-
ods. The results Table 3 indicate that the “data ensembling”
approach is effective at providing a minor but consistent im-
provement the performance of single ResNet-18-FT and the
ResNet-34-FT models, (ResNet-18-FT min. test loss: 0.77
vs. 0.72 for ResNet-18-FT†, ResNet-34-FT min. test loss:
0.70 vs 0.68 for ResNet-18-FT†). However, it is unclear
whether the use of data augmentation at train time actu-
ally improves generalization, as performing these augmen-
tations appeared to have the effect of improving the test set
loss in the case of ResNet-18, while negatively impacting
the both the loss and the class-level F1 scores achieved by
the ResNet-34.

5.2.3 Model Ensembles

Our results indicate that the Top-K mean ensembling strat-
egy is highly effective at improving generalization of the
models tested (Table 3), as our Top-5 Ensemble is able to
achieve a test set loss of 0.58. There does not appear to
exist one ensemble that consistently out-performs all other
ensembles, but it is worth noting that each ensemble outper-
forms all individual models on all evaluation metrics. How-
ever, the diverse ensembling method proved less effective,
as it appeared to perform worse compared to the Top-K ap-
proaches.

5.3. Performance on Kaggle leaderboard

As of June 8, 2017, our best-scoring submission to the
Kaggle leaderboard had attained a Phase 1 public leader-
board position of 19th out of over 800 teams in the compe-
tition, with a multi-class cross-entropy loss on the Kaggle
test set of 0.557. The performance of a selected subset of
our models and ensembles on the Kaggle test set over time
are summarized in Table 4. In general, our results on on
the internal test set presented in Table 3 appear to corre-
spond well to the Kaggle test results in Table 4. In particu-
lar, we find that the Top-K ensemble methods consistently
out-performed submissions derived from a single model and
that the Top-7 mean ensemble attains the best performance,
although the Top-10 and Top-5 ensembles seem to be com-
petitive. Unlike the evaluations on the internal test set,
the “data ensembling” method did not appear to improve
test time performance for the ResNet-34-FT model, as we
achieved a Kaggle test set loss of approximately 0.65 both
with and without the application of this method.

We hypothesize that the improvement in performance re-
alized by ensembling our models derives from stabilizing
overconfident predictions, particularly overly confident in-
correct predictions, as those have a disproportionate effect
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F1

Model or Ens. Type 1 Type 2 Type 3 Acc. Loss

ResNet-18-RI 0.33 0.61 0.45 0.52 0.97
ResNet-18-FT 0.72 0.75 0.60 0.70 0.77
ResNet-34-RI 0.50 0.74 0.63 0.68 0.79
ResNet-34-FT 0.71 0.80 0.67 0.74 0.70

SqueezeNet-FT 0.48 0.71 0.48 0.62 0.91

ResNet-18-FT* 0.39 0.72 0.61 0.65 0.74
ResNet-34-FT* 0.50 0.65 0.62 0.62 0.77
ResNet-18-FT† 0.65 0.75 0.57 0.65 0.72
ResNet-34-FT† 0.57 0.73 0.60 0.68 0.68

Top-10 Ensemble 0.81 0.85 0.75 0.81 0.63
Top-7 Ensemble 0.82 0.83 0.73 0.80 0.59
Top-5 Ensemble 0.78 0.83 0.73 0.79 0.58

Diverse Ensemble 0.65 0.80 0.69 0.75 0.68

Table 3: Performance metrics for each model or ensemble
on the internal test set. The best scores for single models
and for ensembles are bolded. The asterisk (*) indicates
that the model was trained using the data augmentations de-
scribed in §4.2.2, and the dagger (†) indicates that the test-
time predictions were made using the “data ensembling” ap-
proach described in §4.2.3.

on the test loss. To investigate this hypothesis more thor-
oughly, we pooled the predicted probabilities for each class
for each example in the Kaggle test set and each model in
the Top-10 ensemble and plotted the kernel density esti-
mate of the distribution of the probabilities for each class
(Figure 6) with the distribution of the class probabilities for
the mean ensemble overlaid. Before ensembling, the distri-
butions of the predictions of individual models appear bi-
modal, having modes at the extremes of the interval [0, 1],
and that ensembling spreads out the mass of these distri-
butions, thus demonstrating that our ensembles are indeed
performing regularization of the predicted probabilities of
each class.

6. Conclusion and future work

We have described the development and implementation
of a convolutional neural network-based algorithm for cer-
vical TZ type classification from cervigram images. Our
work demonstrates the viability of transfer learning ap-
proaches to this problem, as well as the applicability of
ensemble methods for improving the generalization perfor-
mance of our algorithm. We were able to progressively im-
prove the performance of our models through extensive ex-
perimentation, which included testing various data augmen-
tation strategies and data splitting approaches.

Owing to the success of our ensemble approach, it is

Network Kaggle test set loss

Random guessing benchmark 1.00225
ResNet-34-FT 0.64971

ResNet-34-FT† 0.65466
Top-10 Ensemble 0.57671

Top-7 Ensemble 0.55727
Top-5 Ensemble 0.56271

Diverse Ensemble 0.64745

Table 4: Progression of our algorithm’s results in the
Kaggle competition. The random guessing benchmark,
− 1

N

∑
i ni log

ni

N , takes into account the distribution of
each class i in the train data. The dagger (†) indicates that
the model was trained using "data ensembling". Abbrevia-
tions: RI: random initialization; FT: fine-tuning.

Figure 6: Distributions of predicted probabilities of each
class for all images in the Kaggle test set, for the individual
models in the Top-10 ensemble (red), compared to the dis-
tributions of the probabilities of the mean ensemble (blue).

likely that our algorithm could be improved by a more
thorough exploration of methods capable of penalizing
overconfident predictions, such as label smoothing [51] or
maximum-entropy based confidence penalties [52]. Ad-
ditionally, it may be worthwhile to explore data cleaning
methods to systematically identify, for example, potential
duplicate images for removal from the dataset in order to
lessen potential biases introduced by their presence.

As this work was performed as a part of a currently on-
going Kaggle competition, our future work, at least in the
short term, will focus on preparation of a final submission
in the second phase of the competition that begins on June
15, 2017 and ends on June 21.
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