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Abstract

In this project, we attempted to create a deep learning
model to classify cervix types in order to help health-
care providers provide better care to women all over
the world. The problem is specified by the Kaggle
Challenge found at https://www.kaggle.com/c/
intel-mobileodt-cervical-cancer-screening.
Classification of medical images is known to be a difficult
problem for a number of reasons, but recent advancements
in Deep Learning techniques have shown promise for such
tasks. We experimented with a number of convolutional
architectures before settling on residual neural networks
with dropout and batch normalization to produces scores
for each class, with loss calculated based on the multi-class
logarithmic loss. The dataset, which was provided by
Kaggle, consists of 1481 training images, 512 test images,
and 4633 additional images that we used for training. Due
to the small nature of the dataset, we used a number of data
augmentation techniques. Through experimentation, we
found that it is indeed very difficult for train a model from
scratch that is general enough to solve this problem. While
many techniques gave us marginal improvements in our
performance, we were unable to reach a truly competitive
spot on the leaderboard, likely as a result of overfitting
such a limited dataset.

1. Introduction

Cervical cancer is a deadly but highly treatable disease as
long as it’s detected in early stages and the correct treatment
is administered. Healthcare specialists have broken cervixes
down into three types. Women with Type 1 cervixes do
not require screening beyond the standard procedure, while
women with Type 2 and Type 3 cervixes require more time-
consuming screening processes. Many healthcare providers
in low resource areas of the world have neither the time
nor the expertise to make cervix type classifications, so
women all over the world are missing out on potentially

lifesaving cancer screenings. For our project, we have
entered the Kaggle competition hosted by Intel and Mo-
bileODT (found at https://www.kaggle.com/c/
intel-mobileodt-cervical-cancer-screening)
to create an image classifier for different cervix types. The
input to our classifier is a medical image of a cervix, and
we use deep residual CNNs to output the probability of
the cervix being in each of the three classes. Our hope is
that we can create a system that can aid doctors around the
world in classifying cervix type and in turn help women
get the cervical cancer screening that could potentially save
their lives.

2. Related Works
General Deep Learning Background

We saw the relevant body of literature for this work as
being divided between three rather distinct subject areas.
Firstly, we relied heavily on general literature pertaining to
topics we had exposure to in this class - CNNs, dropout,
batch normalization, etc. We mostly referenced papers that
were suggested to us over the course of the class, Bengio’s
paper on dropout being a prime example. We would also
put several of the external codebases into this section, in-
cluding Tensorflow and associated documentation as well
as the imgaug library. However, we leave most of the de-
tailed explication of how these works influenced our own
for the subsequent sections on data and methods.

Deep Learning in Medical Imaging Tasks

The second category of background literature is that per-
taining to the application of deep learning in medical image
classification, segmentation, etc. For this section, we be-
gan with a fairly comprehensive review by Litjens et. al
from February 2017 - supplemented by more specific read-
ings in areas of interest. One of the high-level findings was
that the use of CNNs and other deep learning architectures
in medical imaging tasks has exploded over the past sev-
eral years, from a negligible number of papers published
in the field during 2014, to around 50 in 2015, and reach-
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ing around 500 in 2016. Classification for exam purposes,
of the type we are attempting to accomplish here, was the
third most common task addressed across all papers. How-
ever, we saw few papers that attempted classification of nor-
mal photographic images, with the vast majority of pub-
lications focusing on the common investigative modalities
of MRI, microscopy, and CT. In terms of CNN architec-
tures commonly applied to medical tasks, ResNet, VGG,
and Inception were the most commonly utilized frameworks
(Liu 2016). Transfer learning has often been applied, given
the frequently limited quantities of labeled data available,
though results are mixed between fine-tuning and feature
extraction approaches (Antony 2016). More recent papers
have achieved better results training models from scratch on
datasets of >1000 images (Menegola 2016).

A particularly important point discussed in multiple pa-
pers was that it is often elements such as image augmen-
tation and pre-processing that made the ultimate differ-
ence in performance more than simply adding more layers.
Such domain-specific alterations can improve performance
as much as 10%, and can be as specific as stain normaliza-
tion and as general as elastic transformations (Ronneberger
2015). Though we couldn’t find much evidence of CNNs or
other deep learning architectures being applied to cervix im-
ages, the closest analogue we could find was classification
of dermatological conditions by standard photographic im-
ages, where authors were able to achieve human-level per-
formance using Inception-v3 (Esteva 2017).

There is also a substantial literature devoted to the unique
problems faced in applying deep learning to medical imag-
ing, many of which we encountered over the course of
our project. For instance, many papers cite the dangers
of falsely labeled images or poor quality data, which in-
fluenced our approach to image curation and removal (Ar-
mato 2011). Class imbalance - oftentimes resulting from
the relative rarity of physiological types or medical condi-
tions in the general population - is another issue that can be
severely detrimental to system performance; this has been
addressed through rebalancing and augmentation specifi-
cally applied to minority classes (Pereira 2016). It is also
difficult to discern whether a classification paradigm is al-
ways the optimal approach as contrasted with a segmenta-
tion or predicted bounding box approach (Sirinukunwattana
et al. 2016). Generally Litjens et. al were optimistic about
applications of deep learning in medical imaging, with the
aforementioned caveats.

Approaches to Cervix Segmentation

While deep learning models have not (so far as we know)
been applied to the problem of cervix classification and seg-
mentation prior to the launch of this Kaggle competition,
there is some literature describing other statistical methods
for accomplishing these tasks. The first paper we could find

on this topic was by Gordon and Zimmerman from 2004,
which introduced a segmentation paradigm based on statis-
tical properties of the texture and color profile of different
parts of cervix images (Gordon 2004). This work was ex-
tended slightly by Srinivasan et al. in 2005, where similar
techniques were applied to cervix cancer detection specifi-
cally. Finally in 2010 Xue et al. developed the most fully
fledged suite of cervix analysis tools for detection, segmen-
tation, and classification (Xue 2010). Unfortunately, this
toolset was implemented using Java applets more suited to
the clinical environment where smaller volumes of images
were being processed. With this in mind, we adapted code
written by Kaggle user Chattob (link to code in references)
that implements the algorithms in the above papers to gen-
erate cropping circles and bounding boxes. Chattob’s code
in turn was based on a follow up to the 2004 Gordon paper
(Greenspan 2009).

3. Datasets and Features
The dataset that we used for this project was the one pro-

vided by Kaggle for this competition. A breakdown of the
dataset can be seen in Figure 1.

Figure 1. A breakdown of the Kaggle datatset

To generate our Validation split, we used 50% of the
Train images for our Training Set and 50% of our Train-
ing images for our Validation Set. We used the additional
data as part of our Training Set as well. The reasoning for
splitting our data like this is that the Train data consists of
high quality images, all from different patients, with no du-
plicates. The additional data, on the other hand, consists
of lower quality images, many of which come from the
same patients, and most importantly, contains duplicates.
For this reason, we did not use any of the additional images
in our validation set, as this would create the possibility of
a duplicate image being in both the Training and Validation
Set. This would artificially increase the performance of our
model on the Validation Set, meaning that the Validation Set
would no longer serve as a good proxy for the Test Set.

Figure 2. Example images of each cervix type. Image (a) is Type
1, image (b) is Type 2, and Image (c) is Type 3
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The sizes of the images in this dataset vary greatly, from
as small as 480 x 640 to as large as 3096 x 4128. As a re-
sult, we used image resizing techniques so that all of our
data was 224 x 224 by the time the model received it as in-
put. On the training images, we resized the image so that
the shortest side was 256 pixels, and then took a random
224 x 224 crop. This is a common technique for data aug-
mentation. For validation and test images, we resized them
so that the side was 224 pixels, and we took the crop from
the center of the other axis. We chose this exact algorithm
because there are images in both landscape and portrait for-
mat. As suggested by TA Ben Poole, we did not subtract
the mean image from each image, as this is not considered
best practice for medical imaging. We did, however, divide
every pixel value by 255 so that every pixel value was in the
range of 0 to 1.

Due to the limited nature of our dataset, we employed a
number of different data augmentation techniques. The first
was that we upsampled from the underrepresented classes
so that the data distribution was even among all of the
classes. While we believe that this is the “correct” way to
train this classifier, we noticed that our models performed
worse when we did this. We believe that this is because the
underlying distribution of the test set more closely matches
that of the training set, rather than that of an even distribu-
tion.

We also utilized a number of more substantive data aug-
mentation techniques. The first was an auto-cropping al-
gorithm, which draws a bounding box around the region
of interest (i.e. the actual cervix) and crops the image to
contain only this region. As noted in the related works sec-
tion, the code was adapted from Kaggle user Chattob (link
to code in references) who in turn made use of algorithms
developed in (Greenspan 2009). The general principle un-
derlying this approach is a statistical measure based on the
color and texture of cervix tissue. The crop is then made
on the basis of an energy minimization algorithm taking in
the aforementioned statistical measure for a given region of
the image. An example of the input output behavior can be
seen in Figure 3.

Figure 3. An example of the input-output behavior of the image
auto-cropping algorithm. Red-blue transform is an artifact of the

cropping procedure that doesn’t affect final results.

In addition to the auto-crop functionality, we also ex-
perimented with a range of different transforms of the un-
derlying images. This type of augmentation was imple-
mented using the imgaug library (User:aleju, see references

for link) and included the following specific transforma-
tions: horizontal flip, vertical flip, sharpening, embossing,
and edge detection. While the first two are fairly standard
in deep learning, we chose the latter four because of the
intuitive notion that they emphasize in various ways the
cell type boundary that is crucial for distinguishing between
cervix types. To put it rather plainly, it is crucial for the sys-
tem to be able to distinguish between the bright red vs. pink
areas visible in Figure 3, as well as to reliably determine
the area of the bright red region. Our chosen augmenta-
tions intuitively seem to accomplish this objective. Exam-
ples of these techniques can be seen in Figure 4. During
training, we experimented with a range of hyperparame-
ters (most pertinently the alpha value, which controls the
strength of the effect) in order to create fairly dissimilar im-
ages that still contained the salient features in the dataset.
Overall we found that moderately high alpha values in the
range of .6-.8 seem to be most effective for producing qual-
itatively desirable training images. When we moved to our
final testing, we applied the flips with probability .5 each
and the remainder of the transformations with probability
.3 to every image. We explore the empirical results of dif-
ferent augmentation procedures in the Experiments section.

Figure 4. Images illustrating different image transformations.
Image (a) has not been altered, image (b) has been flipped

left-right, image (c) has been flipped up-down, image (d) has
been sharpened, image (e) has been embossed, and image (f) has

had edge detection applied

4. Methods

The deep learning framework we used for this project
was TensorFlow-GPU version 1.2.0rc0. Our general
method for classifying images was to build a deep resid-
ual network, employing batch normalization for increased
gradient flow, dropout to reduce overfitting, and the Adam
optimizer. We used multi-class logarithmic loss as our loss
function.
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Residual Network

Deep Neural Networks are more expressive than their
shallow counterparts and should be able to produce better
results, but they are notoriously difficult to optimize. As a
result, until 2016, even state of the art Convolutional Neu-
ral Nets only went as deep as 19 layers. One of the biggest
breakthroughs in the history of image classification came
in 2016, when He et al. introduced the residual network.
Residual networks are built off the basis of a shortcut con-
nection. The idea behind these shortcut connections is some
input i goes through an activation layer, and produces some
output o. Rather than the input to the next layer be o, instead
we use i + o as the input to the next layer. In a sense, the
input shortcuts this layer entirely. An example of a shortcut
connection can be seen in figure 5.

Figure 5. An example of a shortcut connection used in residual
networks

Residual networks make heavy use of shortcut connec-
tions, and they are hugely important to increasing the depth
of neural nets. They allow for layers to become identity
mappings (in other words, o is simply zero), so the input
is able to flow freely through layers that may be extrane-
ous. Further, because the residual blocks allow gradients to
backpropagate more freely, the vanishing backwards gradi-
ent flow that was in the past a huge problem for deep net-
works is far less of an issue. He et al. showed that resid-
ual networks up to depth 152 were reasonable to optimize,
and less complex than the 16 and 19 layer networks that
were considered state of the art at the time. For our project,
we decided to implement deep residual networks so that we
could take advantage of these properties while generating
an expressive model.

We used two different types of residual models for our
project. The first, a 32 layer residual CNN makes use of
shortcut connections every two layers. After a large 7x7
convolutional layer that increases the input depth using 64
filters and a 3x3 max pooling that reduces the height and
width of the input, the network has a number of residual
blocks. Each residual block has two 3x3 convolutional lay-
ers, with a shortcut connection from the input of the first
layer to the output of the second. These residual blocks
are interleaved with max pooling layers for downsampling.
Whenever the input height and width are reduced by a fac-
tor of two during a max pooling layer, the number of filters
is doubled in order to keep spatial dimensionality. At the
end of the network, there is a global average pooling layer

where each activation map is reduced to a single number
(the average of all of its units). Finally, there is a single
fully connected layer to attain the output size of 3. An ex-
ample of the complete architecture can be seen in figure 6.

Figure 6. The complete architecture for our 32 layer residual
network, along with an example residual block

He et al. also proposed a different type of residual block,
which reduces the number of parameters in a block. The
architecture is very similar to the one described above, but
residual blocks have 3 convolutional layers: a 1x1 convolu-
tional layer with fewer filters (to downsample the input), a
3x3 layer with the same number of filters, and then another
1x1 layer with the number of filters of the original input size
to upsample and allow for the shortcut connection. In the-
ory, this requires far fewer parameters than the architecture
proposed above, and would allow for even deeper models
before memory becomes an issue. Our 53 and 101 layer
residual neural nets adopt this type of residual block. The
architectures for these models can be seen in figure 7.

Figure 7. The complete architectures for our 53 and 101 layer
residual networks, along with an example residual block

4



We were interested to see how the downsampling block
of the 53 and 101 layer Neural Net would compare to the
more memory needy block of the 32 layer Neural Net. Its
interesting to note that the only difference between the 32
and 53 layer networks is the type of residual block. Our hy-
pothesis was that, regardless of the depth, each of the neural
nets would be able to converge relatively easily because of
the shortcut connections. Our belief was that even the 32
layer network was likely too expressive for such a small
dataset, but that each of the networks would perform rea-
sonably well because the unnecessary blocks would simply
become identity mappings.

Batch Normalization

One of the biggest difficulties with training deep Neural
Networks is that the distribution of the inputs to each layer
is constantly changing during training time. This is prob-
lematic, because many of the nonlinearities used in Neural
Nets do not perform well unless the input distribution is in a
very specific form. In the past, this has required very precise
tuning of learning rates, and very specific initialization of
weights, and even then deep networks were incredibly diffi-
cult to train. Batch Normalization, as proposed by Ioffe and
Szegedy in 2015, is a technique that normalizes inputs to
each layer during training time. More specifically, for each
batch of inputs, the layer subtracts the batch mean and di-
vides by the batch standard deviation. The layer then scales
and shifts the input with a learned parameter, passing this
normalized input to the next layer. The layer also keeps
track of the running mean and variance, and uses these to
normalize input batches at test time. The mathematical for-
malism for batch normalization can be found in figure 8.

Figure 8. The mathematical formalism for Batch Normalization.
Taken from Ioffe, Szegedy 2016

Because we use deep Neural Networks in our project,
batch normalization was an absolute necessity. Without
batch normalization layers before every activation, even the
shallowest of our models was unable to learn, as activations
became saturated as a result of bad initialization and imper-
fect learning rates. After batch normalization was added,
even the deepest models were able to learn relatively effi-
ciently with a wide range of learning rates.

Dropout

Dropout is a regularization technique proposed by Sri-
vastava et al. in 2014. It has proven to be a very powerful
technique to reduce overfitting, a problem that was plagu-
ing our networks. Despite its power, its implementation is
simple. The way that it works is that neurons in hidden lay-
ers are dropped (along with their connections) with some
probability at training time. Activations and gradients do
not flow through dropped neurons, leaving a slightly less
expressive model on each pass. While its not obvious at
first why this would help reduce overfitting, when we take
a closer look at the hidden layers in deep networks, we can
see that downstream neurons can learn close dependencies
with specific upstream neurons. These specific dependen-
cies generally help to classify train images but do not gener-
alize well to test images. By randomly dropping neurons in
each layer for every input, we can smooth out some of these
close dependencies, as the direct connection between the
neurons may be severed. As a result, dropout has proven to
be a very effective technique at reducing overfitting. While
He et al. did not use dropout in their proposal of Resnet, our
dataset was so small that we were unable to find any rela-
tively complex models (let alone deep residual model) that
did not overfit. As a result, we put a dropout layer with
a drop probability of 0.4 after every non-linearity in our
model. While this slowed our training speed, it did slightly
increase generalization, and allowed us to use more expres-
sive models without egregious overfitting.

Figure 9. The network on the left is a vanilla Neural Network
without dropout. The network on the right is the same network

with dropout applied. Taken from Srivastava et al. 2014

Multi-Class Logarithmic Loss

The loss function that the Kaggle competition uses to
judge submissions is multi-class logarithmic loss. As a re-
sult, we used the same loss function to train our neural net-
works. The equation for multi-class logarithmic loss is:

loss = − 1

N

N∑
i=1

M∑
j=1

yij ln(pij)

Where N is the number of images in the test set, M is the
number of classes, yij is an indicator variable for if image
i’s ground truth label is class j, and pij is the probability
(submitted from our system) that image i is of class j.
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Adam Optimizer

For our optimizer, we chose the Adam optimizer pro-
posed by Kingma and Lei Ba in 2015. This optimizer is
similar to vanilla stochastic gradient descent in that its a first
order, gradient based algorithm used to optimize stochastic
objective functions. It is a hybrid of the popular RMSProp
and AdaGrad optimizers, and it has the attractive properties
of both (it works well with sparse gradients and does not re-
quire a stationary objective function). Further, the optimizer
has the convenient property of naturally reducing the step
size as training proceeds. The algorithm works by keeping
track of not only the weight vector, but also biased estimates
of the first and second moments and the time step. On each
training example, the gradient is calculated and used to up-
date the first and second moment. From these moments,
and unbiased estimate of the first and second moments are
calculated, and these are used along with the time step and
the weight vector to make an update to weight vector. The
pseudocode for this update rule can be found in figure 10.

Figure 10. Pseudocode for the Adam optimizer. Taken from
Kingma and Lei Ba, 2015

We chose Adam as our optimizer for a few reasons. Be-
cause of its momentum property, its less likely to get stuck
at local optimum like vanilla stochastic gradient descent.
Also, because it uses bias correction, correct initialization
is less important, as the algorithm naturally takes care of
a number of the issues that arise when other update rules
are used. Further, because of the natural step size anneal-
ing, the Adam optimizer generally requires less tuning, a
very attractive property when compute time is so limited
and training takes as long as it does (due to the depth of our
networks). Finally, (and most importantly) Kingma and Lei
Ba showed that Adam has been shown to converge more
quickly than other update rules.

5. Experiments, Results, and Discussion
Baseline Model Selection

In order to find our best model, we ran a few distinct
experiments. First, we had to select our top models from a
baseline level. To do so, we ran five models: basic softmax,
32 layer CNN without residuals, and residual nets of depth
32, 53, and 102. Here, we found that 32 and 53 layer
residual nets performed best, as seen in the chart below.

Please note, we also trained a 101 Layer Residual CNN, but
it was too deep to be useful, and continually only picked
Type 3 as the label for images.

Model Val Loss Val Accuracy Val F1 Score Test Loss
Softmax .983 .526 .437 -
32 Layer CNN .953 .561 .509 0.948
32 Layer Residual CNN .948 .580 .573 0.923
53 Layer Residual CNN .930 .554 .514 0.911

At first, these statistics may be confusing. Softmax ap-
pears to be nearly as accurate as our basic convolutional
network. However, it is important to keep in mind that the
distribution of test images is not perfect, so guessing only
Class 2 results in an accuracy a bit above 50 percent, since
it is the most popular class. For this reason, F1 is a much
more valuable metric. Furthermore, the actual competition
is evaluated on validation loss, so our most important metric
is val loss. To visualize this importance, let us examine the
confusion matrix for the Softmax and 32 Layer CNN mod-
els, which have similar accuracy but much different F1.

(a) Softmax (b) 32 Layer CNN

As you can see above, the Softmax model has large suc-
cess rates classifying Type 2 cervices leading to high accu-
racy, but also commonly confuses Type 1 and Type 3 for
Type 2. This is why accuracy is lower. For the 32 Layer
CNN model which has similar accuracy numbers, we see
that F1 is so much smaller because it does a better job on
both Type 1 and Type 3.

Looking at all recorded statistics, we believe that our 32
Layer CNN was the best baseline model, since it had low
val loss and high relative F1. This supports our claim that
residual nets would perform better than their non residual
counterparts. It is interesting to note that each of the con-
volutional neural networks initially has poor F1 in training
because it only guesses that images are of the class Type 3.
This is surprising since the most frequent class is Type 2, yet
this result was found consistently across training. We be-
lieve that the function landscape has a local minimum here,
and it takes a few iterations for the model not to get stuck in
said minimum.

We did not submit Softmax to the competition since its
statistics were not good enough to merit a submission, and
thus it does not have test data.
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Regularization Results

In order to understand the learning process, we looked at
the training and validation accuracy graphs for our baseline
32 and 53 layer residual networks:

(c) 32 Layer Residual CNN (d) 53 Layer Residual CNN

Here, we see a clear difference. The 32 layer network
overfit the data, while the 53 layer network seemed to con-
tinue to learn. We diagnosed two potential issues here.
First, the 32 layer network needed regularization. Second,
the 53 layer network needed to train longer. In order to both
increase validation results for the 32 layer network, and al-
low the 53 layer network to train longer without overfitting,
we decided to implement dropout. This strategy was not
implemented in the original residual network paper, but due
to small datasize and powerful models, we wanted to make
sure some regularization existed in our models. Thus, we
reran these two networks for longer, now with regulariza-
tion.

In order to combat this, we must implement some sort
of regularization for our model. Here, we decided to use
dropout as our form of regularization. The results of our
experiment are shown below:

Model Val Loss Val Accuracy Val F1 Score Test Loss
32 Layer Residual CNN .948 .580 .573 0.923
53 Layer Residual CNN .930 .554 .514 0.911
32 Layer Residual CNN with Dropout .948 .564 .567 -
53 Layer Residual CNN with Dropout 1.072 .499 .467 -

As you can see from the results, dropout had an incon-
clusive effect on our model. The validation loss, accuracy,
and F1 score are all quite similar for the 32 layer residual
model both with and without dropout.

The 53 layer model was hindered by dropout - the final
confusion matrix and per class F1 scores shown below ex-
plain its issues with training:

As the reader can see on the right, the 53 Layer Residual
network, like all of our other networks, only can guess Type
3. Then, after around 10 epochs, the model only guesses
Type 2 or Type 3. Finally, it stops guessing Type 2, and
only guesses Type 1 or Type 3. We plot F1 instead of accu-
racy here to show the effect of false positives. This divide
is easily visualized in the graph to the left. These figures
are important since they illustrate a common issue with our

(e) Confusion Matrix at Epoch 70 (f) Per Class F1 over 70 Epochs

dataset - the function landscape appeared to have local op-
tima at guessing either only one type (usually Type 3), or
any set of two types. Dropout further pushed our 53 Layer
Residual model into these optima, which was an unexpected
result seeing as it usually causes better generalization.

Data Augmentation Results

After we found that dropout had somewhat negligible ef-
fect on preventing overfitting with our 32 layer model, we
realized that the issue could be our small dataset. Thus,
we began a new experiment which combined dropout and
data augmentation on our 32 layer network. This gave us a
larger data set and regularization, which should combine to
prevent overfitting. We augmented the data as described in
previous sections.

Model Val Loss Val Accuracy Val F1 Score Test Loss
32 Layer Residual CNN .948 .580 .573 0.923
32 Layer Residual CNN with Dropout .948 .564 .567 -
32 Layer Residual CNN with Dropout and Data Augmentation .936 .576 .551 -
32 Layer Residual CNN with Data Augmentation .879 .588 .578 .873

As you can see, surprisingly enough the model gener-
alized better when only using data augmentation. This led
to our best self trained model with a test accuracy of .873.
These results are somewhat unsurprising, since the original
residual networks did not use dropout.

Transfer Learning

We also experimented with transfer learning. As stated
above, it was our hypothesis (based on our reading of
past papers, specifically Menegola 2016) that transfer
learning would be difficult to employ given the substantial
differences between our dataset and more common sources
such as ImageNet. To test this hypothesis, we downloaded
pre-trained weights for Inception v3 that had achieved
95% test accuracy on Imagenet. This model is part of the
default Tensorflow source code at https://github.
com/tensorflow/tensorflow/tree/master/
tensorflow/examples/image_retraining. The
weights for the final fully-connected layer are deleted and
subsequently retrained using SGD. When running 2000
iterations on the un-augmented, non-additional dataset
(approx. 15 epochs), we observed a high validation accu-
racy of .61 and a low validation loss of .87. When we ran
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4000 iterations on the full set of auto-cropped images, we
observed a low validation loss of .8 and a high validation
accuracy of .7. The test accuracy for the latter was around
.6.

Figure 5. Transfer learning on Inception v3. Plots (a) and (b) are
accuracy and loss plots for the limited dataset and (c) and (d) are

accuracy and loss plots for all images with auto-crop applied.
Orange curves represent train data and cyan represent validation

data

6. Conclusion and Future Work

At the beginning of this project, we set out to train our
own neural networks to attack the problem of cervix type
classification. From our readings of previous papers on the
application of deep learning in medical imaging, as well as
previous algorithmic attempts at cervix classification, we
recognized that this was a difficult task. As we began train-
ing models, we came to realize that the relative lack of
data and high visual similarity between classes were par-
ticularly difficult challenges. In an attempt to combat these,
we employed a range of statistical cropping and augmenta-
tion techniques.

Over the course of the project, we experimented with a
range of different CNN architectures, mainly based on the
ResNet model, and found that the 32 Layer Residual Net-
work with Data Augmentation performed the best of self
trained models. Though we did not conduct a thorough in-
vestigation, we found that transfer learning using an Incep-
tion v3 model trained on Imagenet yielded more promis-
ing results. In analyzing these findings, we found that we
underperformed the top scorers on the Kaggle leaderboard
fairly significantly, though we generally used similar tech-
niques. Moreover, in conversations with other students in
the course we noticed that even when applying the same
models there was a high variance in performance within
and between groups. There are several possible explana-
tions for such discrepancies, including a more successful
hyperparameter search or a better data curation strategy.

Since the fundamental goal of this project was to learn
about training CNNs in the real world, we focused heavily
on techniques used to train networks from scratch. How-
ever, if we had more time, we would conduct a more thor-
ough comparison between models trained from scratch and
those initialized using transfer learning. We would also
pursue a more extensive understanding of the flaws in our
model beyond the use of classification errors - we could use
saliency maps or minimum fooling images for example. In
the final analysis, we feel confident that while this is a diffi-
cult task, given appropriate time and resources a deep learn-
ing model could conceivably approach trained human level
performance.
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