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Abstract

We implemented and fine tuned four different archi-
tectures of convolutional neural networks on the problem
of identifying cervix type. We experimented with multi-
ple choices of hyper parameters, transfer learning from
ImageNet, as well as manually identifying region of in-
terest to improve classification accuracy. Experiments
showed Inception v3 outperforms other architectures, such
as AlexNet, ResNet and VGG16. Training the model from
scratch outperformed fine-tuning pre-trained models, and
identifying region of interests helped classification of one
type of cervix. Saliency maps show that Inception v3 ex-
hibited desirable neural activation in the region of interest.
A bounding box regressor exhibited good performance and
indicated the possibility of adapting R-CNN in the future
work.

1. Introduction
Cervix cancer is one of the most common cause of can-

cer death for women. However, cervix cancer is easy to pre-
vent if women can get effective treatment at an early stage.
Every woman should have access to it. The treatment can
be very different depending on patients physiological dif-
ferences. Wrong treatments are costly and can incur high
health risks. Developing an appropriate method of treat-
ment for individual woman is important but not easy in the
areas lack of expertise in this field, especially in the rural
parts of the world.

There are three types of cervices. If the cervix type of a
patient were correctly identified, appropriate treatment can
be provided. Intel & MobileODT Cervical Cancer Screen-
ing is an image classification challenge on Kaggle aimed
at differentiating three physiologically different types of
cervix. If a good algorithm can be developed, it can be in-
tegrated into the digital toolkit for health care workers of
every level to provide expert services to patients. In this pa-
per, we will use cervical images as inputs, feed them into
Deep Convoluntional Neural Network (DCNN) with vari-
ous architectures, and predict the types of cervices.

2. Related Work
DCNN have achieved a great success in computer vision,

especially in the field of image classification (e.g. Ciresan
et al.[3],Ciregan et al.[4], Krizhevsky et al.[10],Simonyan et
al.[17]). Because of rapid development of computer vision
thanks to the intensive research in deep learning in recent
years, more and more professionals and experts from other
fields start trying transferring the success of image classi-
fication with DCNN to their fields. Medical image classi-
fication is one of those fields that have drawn special at-
tention partially due to the extraordinarily large amount of
data generated from electronic medical record (EMR) and
the need to understand the data[15]. The publications (e.g.
Ronneberger et al.[14], Ciresan et al.[5], Milletari et al.[12],
Kamnitsas et al.[9], Havaei et al.[6]) in the field of medical
image classification/segmentation have become one of the
most popular application areas of DCNN and medical soci-
eties have become more open to the aid of machine learning.
However, until now, none of publications have examined the
ways of classifying cervix type probably to due to the lack
of data. The current standard procedure of identifying the
cervix type depends purely on the judgment of the gynecol-
ogist which is prone to human errors and have high costs.
Such approach is not sufficient and economically feasible in
a resource-limited settings such as Sub-Saharan Africa and
South Africa where have higher the prevalences of cervi-
cal cancer but have limited amount of medical resources[1].
The aid of a well validated classification algorithm to iden-
tify the cervix type prior is of vital importance in helping
prevent cervical cancer and improve the treatment of cervi-
cal cancer.

3. Methods
We survey four well-known deep convolutional neural

network architectures, AlexNet (see [11]), VGG16 (see
[17]), GoogleNet (see [18]) and ResNet (see [8] (see ta-
ble 1) that have shown good performances on ImageNet.
The last few fully connected layers are modified to suit this
classification task (see detailed explanation below).

1. AlexNet: we use exactly same architecture as [11], ex-
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cept model output is the softmax scores for three types
of cervices. It has 5 convolutional layers and 3 fully
connected layers, with around 12.6 million trainable
variables.

2. Inception v3: we use exactly same architecture as
[11], except the last layer adapted to our output (we
referenced the implementation here 1). This model has
21 convolutional layers and 1 fully connected layer. In-
ception v3 has fewest number of trainable parameters
compared to other architectures.

3. VGG16 has 13 convolutional layers and 3 fully con-
nected layers (we referenced the implementation here
2). To fit into the memory limit of a single GPU and
speed up training, we use 3×3 filters for each con-
volutional layer, but reduce the number of filters by
half. The output dimensions for last three fully con-
nected layers are 512, 1024 and 3 respectively. We ap-
ply dropout with probability 0.8 to the first fully con-
nected layer. The adjusted VGG16 model has compa-
rable number of trainable parameters as AlexNet.

4. ResNet we build our model based on the 34-layer ar-
chitecture in [8] (we referenced the implementation
here 3. It has 33 convolutional layers, with 4 resid-
ual blocks. We add 3 fully connected layers on top of
the convolutional layers, whose dimensions are 512,
1024 and 3 respectively. We have 2 more fully con-
nected layers compared with 34-layer architecture in
[8], which result in better performances. The side ef-
fect is that our ResNet has 21.6 million trainable pa-
rameters, which is the most among four architectures
we choose.

With these minor adjustments, mostly to the fully con-
nected layers, the convolutional layers in the adjusted mod-
els can still have the receptive fields covering the whole im-
age. These convolution layers can capture many generic
nonlinear features such as shape and angle, that are useful
in the cervix classification task. The fully connected layers
are adapted to cervix classification task at hand, trying to
find linear combination of nonlinear features used to iden-
tify cervix types, which may be different from that used to
classify images on ImageNet.

4. Dataset and Features
The input to this problem are 5278 training images of

size with labels∈ {1, 2, 3} (see Table 2) and 512 test images
1https://github.com/tflearn/tflearn/blob/

master/examples/images/googlenet.py
2https://github.com/tflearn/tflearn/blob/

master/examples/images/vgg_network.py
3https://github.com/tflearn/tflearn/blob/

master/examples/images/resnext_cifar10.py

... AlexNet Inception v3 VGG16 ResNet

Layers 8 22 16 36
Trainable
Parameters

12.6M 6.17M 12.6M 21.9M

Training Time
Per Epoch
(1320 images)

∼17 s ∼ 42 s > 1 min ∼ 33 s

Table 1: Summary of four architectures used (Training
Time is measured by single GPU (Tesla K80) with mini-
batch size equal to 64)

Cervix Type Type 1 Type 2 Type 3 Total
Main 249 781 450 1480

Additional 1187 639 1972 3798

Table 2: A summary of distribution of class labels

without labels. The training images are partitioned into two
sets, main and additional sets. Images from the the main
training set are of high image quality (see Fig. 1). Images
from the additional training set sometimes come from du-
plicated patients while sometimes are of low image quality
(see 2). We randomly select 90% of images in the main data
set as the training set and rest are the validation set. In the
attempts to use images in the additional data set to train In-
ception v3, the model takes longer time to train, is harder
to converge, and unfortunately has a higher validation loss
compared to the model only trained by images in main set.
The remainder of this paper only presents results obtained
with main set as training set.

All training images are JPEG file with scale 3 : 4 and
most frequent sizes are 2448×3264 and 3096×4128. We
pre-process them down to 256× 256× 3 RGB images (see
Figure 1) through the following steps:

1. Scale all images down to 256×256 by affine transfor-
mation on the four corners with bi-cubic interpolation
on the interior grid points.

2. Shift all training images by the mean evaluated over
all training samples by RGB channels. We center the
validation and test samples by the same channel-wise
mean.

The input images do not all have high quality (see Fig-
ure 2); some are out of focus and some only has a single
color channel. In addition, many images have the vaginal
speculum, which is inserted into the vagina to dilate it for
examination of the vagina and cervix. Some images have
a small region of cervix compared with the speculum. In
the second step of data pre-processing, we manually iden-
tify the Region of Interest (ROI) for all images in the main
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original image of
Cervix Type 1

preprocessed image
of Cervix Type 1

original image of
Cervix Type 2

preprocessed image
of Cervix Type 2

original image of
Cervix Type 3

preprocessed image
of Cervix Type 3

Figure 1: Preprocessing: on the left are images from data
sets and on the right are preprocessed images by scaling
them down to fixed size 256 × 256 with affine transforma-
tion on the four corners and bicubic interpolation on the in-
terior pixels.

Figure 2: Some examples of bad training image

set. We extract ROI and scale all ROIs up to 256× 256× 3
to feed into our models.

During the training stage, images are augmented through
the following steps:

1. randomly crop

2. randomly flip an image left to right

3. randomly rotation an image by a random angle from
-45◦ to 45◦.

A standard color channelwise mean is calculated for all
training image and subtracted for each batch as the final pre-
processing step.

5. Results
Our objective is to minimize the loss function on the set

of test image, defined as a categorical cross entropy func-
tion:

L = − 1

N

N∑
i=1

M∑
j=1

yij log(pij) (1)

where pij is the probability that observation i is predicted
to belong to class j and yij is the 1 when observation i is
belong to class j and 0 otherwise. We add l2 regularization
loss for the weights to 1 in the train process.

5.1. Training Deep Convolutional Neural Network
from Scratch

We initialize the weights in the convolutional and fully
connected layers from with normal distribution and the bias
to zero. We train each model up to 80 epochs. The training
will stop early if validation accuracy does not improve in 10
epochs. We tune learning rates, number of fully connected
layers and their dimensions and optimizers for each of the
four architectures. The best model for each architecture is
selected by the best validation loss/accuracy on the valida-
tion set. We use the best model to predict class scores of
images on the test set and submitted them to kaggle. The
loss is evaluated by Kaggle.

The hyper-parameters chosen for each model architec-
ture are summarized in Table 3. We choose a higher
dropout probability than proposed in the original AlexNet
and VGG16, as the input size is significantly less than num-
ber of trainable parameters. We choose RMSprop over SGD
with momentum for its faster rate of convergence and sta-
bility near local minimum of loss function. We find that
using momentum updating rule can easily cross the local
minimum and diverge on the cervix dataset. In contrast,
RMSprop can generate a roughly monotonically decaying
training and validation loss.

The results for four types of models see Table. 4. In-
ception v3 has best validation accuracy and loss and test
loss, followed by ResNet. The train accuracy and loss are
very close to validation accuracy and loss for both incep-
tion v3 and ResNet. The training loss history and accu-
racy of Inception v3 and Resnet see Fig. 4. Inception v3
has consistent better performance from the first few epochs
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... AlexNet Inception v3 VGG16 ResNet

L2 reg. 0.001 0.001 0.001 0.0001
lr 0.001 0.001 0.0001 0.001
Dropout 0.8 0.4 0.8 0.8
Optimizer Mom. Mom. RMSprop RMSprop
Mini-batch
size

64 64 64 64

Table 3: Hyper-parameters choices for 4 Types of Deep
Learning Models

... AlexNet Inception v3 VGG16 ResNet

Training Acc. 65% 67% 71% 69%
Training Loss 0.79 0.74 0.68 0.79
Validation Acc. 60% 73% 63% 64%
Validation Loss 0.89 0.66 0.91 0.83
Test Loss 0.92 0.79 1.72 0.82

Table 4: Results from 4 Types of Deep Learning Models

compared to ResNet. From the trend of the loss history,
the performance of our models could be better if we train
more epochs, but the loss and accuracy fluctuate severely,
and consequently the loss on the validation set and test set
is more sensitive to the checkpoint we choose than to the
number of epochs we train after we train 50 epochs for both
Inception v3 and ResNet.

It is worth noticing that with 1320 training images, none
of the models exhibit overfitting when dropout probability
set to zero in our search of best hyperparameters. Our hy-
pothesis is that these architectures may be too complicated
for this data set and have too many local minimums and our
choices of learning rate update scheme could easily jump
over these local minimums.

Table 5 shows the percentage of predicted labels for each
type of cervix for Inception v3. Inception v3 has highest
accuracy to identify type 2 images, which is 80%. The ac-
curacy to identify type 1 and 3 is around 60%. Even though
the accuracy to identify type 3 images is high, it comes with
the very high false positive rate, that is, around 40% of type
1 and 3 images are mistakenly identified as type 2 images.
A possible explanation for this result is that around 53% im-
ages are type 2 cervix. It is possible that if the distribution
used to sample each batch size for training has slightly type
1 and 3 probabilities that the probabilities in the empirical
distribution calculated from Table 2, we could mitigate the
problem that the prediction is biased significantly towards
type 2.

Figure 3: Visualization of conv1 filter in AlexNet. Top row:
history of conv1 filter initialized from pretrained Alexnet
and fine tuned on the data set. Bottom row: history of conv1
filter initialized from random and fine tuned on the data set.

5.2. Effect of Transfer Learning

5.2.1 AlexNet

We measured the effect of transfer learning on AlexNet with
two modes of training AlexNet for 80 epochs on the main
dataset. In the first mode, all trainable weights are ran-
domly initialized and trained via stochastic gradient descent
(SGD) with learning rate = 10−5 and momentum = 0.9. In
the second mode, all trainable weights are initialized with
weights obtained on ImageNet, and trained via two stages:
in the first stage (48 epochs), only weights from the top 5
layers are trained via SGD with learning rate = 10−5 and
momentum = 0.9. In the second phase(32 epochs), the mo-
mentum are set to zero and all weights are trained via SGD
with a smaller learning rate =10−6 and momentum = 0.9.
Both modes demonstrated similar loss history profiles in the
training set in Figure 3.

We visualize the effect of transfer learning through the
bottom convolution layer in Figure 3. It is clear that conv1
filters loss all its “good” features when fine tuned on the
main dataset and do not look much better than trained from
scratch. We also noticed that the class scores reported on the
test images by the pre-trained AlexNet are predominantly
sampled from neighborhood of [0.08, 0.72, 0.20], thus pre-
dicting type 2 labels for all images. We conducted similar
experiment on VGG16 and ResNet and observed the same
effects.

5.2.2 VGG16 and ResNet

We performed similar analysis on VGG16 and ResNet with
our own custom fully connected layers (see Section 5.1).
Due to presence of skip connections, we did not take the
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Figure 4: Training loss and accuracy of Inception v3 and
ResNet

two-stage fine-tuning approaches for transfer learning; in-
stead, the training is performed on all weights for 80 epochs
with parameters specified in Section 5.1. The same two
phenomenons are observed: one, VGG16 and ResNet are
stuck in the local optimal in fewer than 3 epochs for all the
parameter update methods, initial learning rate and l2 regu-
larization we tried so far and reported class scores [0, 1, 0]
for all test images; two, no visually good conv1 filter were
obtained in both cases.

5.2.3 Our Hypothesis

One possible explanation is that the cervix images are quite
different from the images on ImageNet. On the one hand,
we think we need faster learning rate to quickly make ad-
justment to the differences from ImageNet. On the other
hand, we think we need slower learning rate to avoid the
fast trap in local optimal. We are still figuring out the best
way to make use of pretrained weight. In the future We may
use pretrained weights for the bottom convolutional layers,
especially to bottom layers, and may initialize bias in the
top layers to allow adjustment in our model.

5.3. Saliency Map Visualization

Given that none of DCNN exhibiting overfitting, we plot
saliency map to visualize the neural activation for each type
of images. A saliency map tells us the degree to which each
pixel in the image affects the classification score for that
image [16]. To compute it, we compute the gradient of the
unnormalized score corresponding to the correct class with
respect to the pixels of the image.

Fig. 6 shows the the saliency map for Inception v3. For
type 1 images, those with highest classification scores are
affected by the red patch most, which is expected; For type 2
images, those with highest classification scores are affected
by the black region in the middle of the image, which is ex-
pected as well. For type 3 images, those with highest clas-

True\ Pred. Type 1 Type 2 Type 3

Type 1 0.57 0.40 0.03
Type 2 0.15 0.80 0.05
Type 3 0.01 0.39 0.60

Table 5: The distribution of predicted types for each cervix
type in Inception v3

sification scores are affected by the boundary of images and
shadow of cervix, which should not be the useful informa-
tion to identify type 3 cervix. As a consequence, most type
1 and type 2 images with lowest classification scores have
virginal speculum and shadow of cervix, because they are
”confidently” identified as type 3 cervix by Inception v3.

The results from saliency maps motivate us to focus
on deactivating neurons that detects virginal speculum and
shadow of cervix and is the motivation of manually label
Region of Interest (ROI) in our pre-processing steps.

5.4. Effect of Bounding Box

We manually draw and crop the bounding box for the
region of cervix in images on the main set. Since region
of cervix has different shape and size, we scale the regions
up to 256 × 256 × 3 images to feed into the same neural
network, so that we can measure the effects of cropping.
We name the images only with cervix as cropped and scaled
images.

5.4.1 Classification Result and Saliency Visualization

We use Inception v3 to train the scaled images and Table 6.
The training loss and accuracy of Inception v3 using origi-
nal images and cropped and scaled images see Fig. 5. In-
ception v3 using cropped and scaled images dominates the
one using original images from the start of the training pro-
cess evaluated by either loss or accuracy. In addition, Incep-
tion v3 with cropped and scaled images achieved the loss of
0.64 and the accuracy of 76% on the validation, which is
better than the results using the original images in Table 4.

Saliency maps 7 show that the region that affects classifi-
cation score most is larger compared with the saliency maps
6 using the original images, because the region of interest
of the cropped and scaled images spread the whole images.
The distribution of predicted classes for each cervix type
see Table 6. Compared with Table 5, the accuracy for type
3 cervix identification significantly increases. Cropping the
irrelevant information out forces the model to learn from the
useful information to identify cervix. Type 2 and 3 cervices
identification benefit most from cropping.
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Figure 5: Training loss and accuracy of Inception v3 using
original images and cropped and scaled images

(a) Type 1

(b) Type 2

(c) Type 3

Figure 6: Saliency Map for Inception v3 for the top 5 and
bottom 5 classification scores corresponding to the correct
class (the classification score is between the original image
and the saliency map)

True\ Pred. Type 1 Type 2 Type 3

Type 1 0.55 0.39 0.06
Type 2 0.09 0.86 0.05
Type 3 0.05 0.17 0.78

Table 6: The distribution of predicted types for each cervix
type in Inception v3 (using cropped images within bounding
box for training)

(a) Type 1

(b) Type 2

(c) Type 3

Figure 7: Saliency Map for Inception v3 (using cropped
images within bounding box for training) for the top 5 and
bottom 5 classification scores corresponding to the correct
class (the classification score is between the original image
and the saliency map)

5.4.2 Bounding Box Prediction

Since using cropped and scaled images can have lower vali-
dation loss and higher accuracy, in this section, we are inter-
ested in predicting the bounding box coordinates given im-
ages. Faster R-CNN [13] is the state-of-art model to detect
object. We build our bounding box prediction model sim-
iliar to Faster R-CNN; we do not use Faster R-CNN as we
think our problem is not a multi object detection problem.
The objective is to predict (xi, yi, wi, hi), where (xi, yi) is
the center of the bounding box and wi and hi are width and
height of the bounding box. Let the predicted bounding box
has (x̂i, ŷi, ŵi, ĥi), and

txi
= (x̂i − xi)/wi tyi

= (ŷi − yi)/hi

twi
= log(ŵi/wi) thi

= log(ĥi/hi)

the bounding box loss is defined as

L =
1

N

N∑
i=1

(t2xi
+ t2yi

+ t2wi
+ t2hi

) (2)

We add L2 regularization loss to the bounding box loss
to get the total loss. We train the model to minimize the
total loss.

Here, we use a ”tiny” ResNet to predict the bounding
box. There are 9 conv layers and 2 fully connected layers.
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Figure 8: Training loss and validation loss of bounding box
prediction

Compared with ResNet 18-layer in Table 1 in [8], the first
conv layer is the same conv1 in Table 1 in [8], the second
to fifth residual blocks are the same as conv2 x to conv5 x,
except that they are multiplied by 1 instead of 2 in Table 1
in [8], so the number of conv layers decrease by half for
the second to fifth residual blocks. The sizes of two fully
connected layers are 512 and 4 respectively, with dropout
probability 0.8 applied to the first fully connected layer. The
activation function for these two fully connected layers are
relu and sigmoid multiplied by 250 ((xi, yi, wi, hi) range
from 0 to 255). We use learning rate to be 1e-6, l2 regular-
ization strength to be 1e-5, batch size to be 32, and Adam
optimizer to update trainable variables in the model.

Fig. 8 shows the training and validation loss histories.
There are some unusual peaks in the training loss history.
The reason is that some images have very small bounding
box, which results in large loss even absolute difference
between (xi, yi, wi, hi) and (x̂i, ŷi, ŵi, ĥi) is at a similar
scale as difference in images which have large bounding
box. Fig. 9 shows some examples of predicted bounding
box and ground truth bounding box.

6. Conclusion and Future Work
In this paper, we compare the four most popular archi-

tectures in image classification problem and we find that
Inception v3 performs best compared to AlexNet, VGG16
and ResNet. The cervical images are significantly differ-
ent from images on ImageNet, and therefore, we get better
performance to train the model from scratch than to use pre-
trained model on ImageNet and fine-tune the model on the
cervix dataset. Saliency map visualization prompts us to
improve identification for type three cervix through extrac-
tion of Region of Interest, which we did both manually at
first and later with a bounding box regressor. We also find
that a ”tiny” ResNet can identify the bounding box of cervix
from images with a large region of irrelevant information.

Due to time constraints, not all our ideas are imple-

Figure 9: Bounding box prediction examples (Blue rectan-
gle is the ground truth bounding box labeled manually, and
red rectangle is the predicted bounding box from the neural
network)

mented. we think the following appraoches can potentially
improve the performance of the DCNN to identify cervix
types.

1. Given that we have a bounding box regressor and a
CNN, We could use faster R-CNN [13] to combine
them for cervix type classification. Since there are
some good results from using only regions of interest
to identify cervix types and from predicting bounding
box, it is possible that faster RCNN could have lower
classification loss and higher accuracy.

2. Spatial pyramid pooling (SPP) [7] is robust to object
scale and deformation. Since the region of interest
(cervix) in the cervical images varies in both size and
aspect ration wildly, adding the spatial pyramid pool-
ing layer on top of the convolutional layers could im-
prove recognition accuracy.

3. We find the performance of DCNN is very sensitive
to hyper-parameters. We could use random search
for hyper-parameter optimization ( [2]) to tune hyper-
parameters. In addition, we could look for a better
scheme to use additional training set.

4. In order to generate more features, we may use the
Generative Adversarial Networks(GAN) to train the
images and generate additional features and concate-
nate the features with the features from last fully con-
nected layer. In doing so, we may improve on the ac-
curacy.
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