
Exploring Methods on Tiny ImageNet Problem

Huseyin Atahan Inan
Stanford University
hinan1@stanford.edu

Abstract

In this project, we are interested in building a neural
network architecture for the image classification task on
the Tiny ImageNet dataset. We first modified the last layer
(fully-connected layer) of the well-known ResNet architec-
ture to obtain a good performance as a baseline. We further
tried incorporating LSTM’s on the last two convolutional
layers of the ResNet architecture. We explored different such
architectures involving LSTM’s and compared the results of
these networks.

1. Introduction
Tiny ImageNet Challenge is very similar to the well-

known ImageNet Challenge (ILSVRC). The goal is to
achieve the best possible performance for the Image Clas-
sification problem. Tiny ImageNet Challenge is a subset of
the ImageNet Challenge where it contains 200 classes in-
stead of 1000 classes. Each class has 500 training images,
50 validation images, and 50 test images. The final network
is given a test image and should output a class prediction
out of 200 classes.

We approach the problem first by doing the literature re-
view and understanding the approaches introduced for the
ImageNet Challenge. Since the problem and the dataset is
very similar to the ImageNet Challenge (ILSVRC), it is very
natural to consider that these methods will perform very
good in the Tiny ImageNet Challenge as well. Given that
the modern ConvNets take 2-3 weeks to train across multi-
ple GPUs on ImageNet, it proves to be better to utilize the
pretrained models and try to improve upon them by com-
ing up with novel ideas. For this purpose, we first read the
Transfer Learning section from the lecture notes [1] since it
provides many practical and important tips.

We next focused on the ResNet model [2] which is built
on very interesting and intuitive idea and it is the winner of
the 2015 ImageNet Challenge. We modified the last layer,
i.e., the fully-connected layer by making it output to 200
class scores instead of 1000 class scores and trained this
modified network to get a baseline performance.

We next considered applying LSTM’s to the final convo-
lutional layers of ResNet to see whether we can get better
performance by incorporating LSTM’s. We tried different
combinations and compared the performance results among
each other and also with the baseline. Unfortunately, we
were unable to beat the baseline performance in the end.

2. Related Work
One can say that the success of the deep convolutional

networks started with the AlexNet introduced in [3] that
won the 2012 ImageNet Challenge (ILSVRC) by a huge
margin (achieving a top 5 test error rate of 15.4% compared
to the next best entry achieving an error of 26.2%). The
layout introduced in [3] consists of 5 conv layers along with
max-pooling layers, dropout layers, and 3 fully connected
layers.

In 2013, the winner of the competition was ZF Net in-
troduced in [6] achieving an error rate of 11.2%. It has a
similar structure to the AlexNet but one main and impor-
tant difference is that they use 7 × 7 sized filters instead of
11 × 11 in the first layer to retain pixel information in the
input. ZF Net paper further provides visualization approach
that helps understanding the inner workings of the network.

VGG Net was introduced in [4] in the year of 2014 that
has become popular due to having a simple yet deep and
powerful network with small sized filters (3 × 3). This al-
lowed the network to be more efficient in terms of the num-
ber of parameters.

The winner of ILSVRC 2014 was GoogLeNet which is
a 22 layer CNN that achieved an error rate of 6.7%. The
paper [5] introduces the idea of an Inception module that
allows to perform convolution and pooling operations at the
same time (in parallel) by using 1 × 1 convolutions which
help reducing the dimensionality of the input. This network
also does not use any fully connected layers which saves a
huge number of parameters. They obtain the final output
using an average pool instead.

The last network that we mention is the Microsoft
ResNet introduced in [2] that won ILSVRC 2015 with an
error rate of 3.6%. It goes as deep as 152 layer network ar-
chitecture. It achieves a good performance with such deep

1



network due to the Residual Block idea that basically adds
the input itself to the output of conv-relu-conv layers. Here
the network only needs to compute the term that one has
to add to the input itself and the claim is that it is easier to
optimize the residual mapping. Note that it will be much
easier for the network to learn nothing which will result in
an identity mapping, hence, worst case the performance will
stay the same.

3. Approach
In this section, we provide the approaches taken for the

image classification problem aforementioned. We start with
taking the ResNet model and modifying the last layer, i.e.,
the fully-connected layer such that it provides scores for 200
classes instead of 1000 classes. Figure 1 depicts the modi-
fied network.

We next incorporate LSMT’s to this network as follows.
We consider the output of last two layers (conv4 and conv5)
as sequences with respect to their depths and we separate
them into groups of length 64. Note that the depth for conv4
is 256 which will provide 4 such sequence and the depth for
conv5 is 512 which will provide 8 such sequence. There-
fore, in total, we will have 12 sequences of length 64 and
there will be one LSTM corresponding to each sequence,
hence, there will be in total of 12 LSTM’s. We keep the hid-
den size same as the input size, therefore, the LSTM’s corre-
sponding to sequences coming from conv4 has hidden size
14 ∗ 14 = 196 and the LSTM’s corresponding to sequences
coming from conv5 has hidden size 7 ∗ 7 = 49. In the end,
we concatenate all the last hidden vectors of the LSTM’s
which will provide us a vector of size 49∗8+196∗4 = 1176
and we use a fully-connected layer to output a vector of size
200 corresponding to the scores of the classes. Figure 2 de-
picts the corresponding network.

4. Experiment
In this section, we will explain the experiments we con-

ducted and provide the results. We start with the discussion
of the dataset we have used.

Tiny ImageNet dataset contains 200 classes where each
class has 500 training images, 50 validation images, and 50
test images. We train the network using the training images
while observing the performance on validation set. The test
images do not have labels, therefore, the final predictions
are obtained using test images and sent to the online server
for the performance on the test set. We evaluate our results
based on the accuracy, i.e., the fraction of correct labels cor-
responding to the images.

The baseline network where we modified the fully-
connected layer of the ResNet provided us with the test error
of 0.338. We note that we did not spend much time training
this network since we wanted to quickly get a good baseline

18-layer residual

avg pool

fc 200

Figure 1. The baseline network. The image is modified from Fig-
ure 3 of [2].

accuracy and move on to trying our own ideas, therefore,
one can get better performance by spending more time on
fine-tuning and choosing learning rate carefully etc.

2



18-layer residual

fc 200

4 LSTM’S for sequences
0:64, 64:128, 128:192, 192:256

8 LSTM’S for sequences
0:64, 64:128, 128:192, 192:256
256:320, 320:384, 384:448, 448:512

concatenate last hidden vectors

Figure 2. Incorporating LSTM’s. The image is modified from Fig-
ure 3 of [2].

We next continue with the ResNet model where we in-
corporate LSTM’s as explained in the previous section. We
first kept all the convolutional layers constant while train-

ing the LSTM’s and the final fully-connected layer and then
when we reached at a flat region in terms of accuracy, we
trained the whole network. One can observe in the plots
that we obtained a jump in the performance when we went
to training the whole network. Figure 3-6 shows the loss
and accuracy for training set and val set. The final accu-
racy for the validation set is 0.6659. With this network, we
achieved an error rate of 0.386 on the test set which is un-
fortunately worse than the baseline performance. We also
tried adding LSTM’s to the earlier layers or using different
sequence lengths, for instance, 128 instead of 64 but they
gave similar performances.

0 5 10 15 20 25 30 35
Epoch

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Lo
ss

 f
o
r 

th
e
 t

ra
in

in
g
 s

e
t

ResNet with LSTM's

Figure 3. Results for the ResNet model with LSTM’s

0 5 10 15 20 25 30 35
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy
 f

o
r 

th
e
 t

ra
in

in
g
 s

e
t

ResNet with LSTM's

Figure 4. Results for the ResNet model with LSTM’s

0 5 10 15 20 25 30 35
Epoch

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Lo
ss

 f
o
r 

th
e
 v

a
l 
se

t

ResNet with LSTM's

Figure 5. Results for the ResNet model with LSTM’s

3



0 5 10 15 20 25 30 35
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy
 f

o
r 

th
e
 v

a
l 
se

t

ResNet with LSTM's

Figure 6. Results for the ResNet model with LSTM’s

We finally took the ensemble of this network and the
baseline where we took the average of the scores produced
by these networks and that gave us an error rate of 0.329 in
the test set.

5. Conclusion
In this project, we were interested in the image classifi-

cation task on the Tiny ImageNet dataset. We learned how
to take a pretrained model and modify it and fine-tune to
obtain good performance for the problem that we had. We
also experimented incorporating LSTM’s on top of ResNet
model to obtain better performance. Unfortunately, we were
unable to beat the baseline performance, however, we be-
lieve that one can come up with interesting techniques that
could potentially provide better performance.

References
[1] Transfer learning. http://cs231n.github.io/

transfer-learning/.
[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual

Learning for Image Recognition. ArXiv e-prints, Dec.
2015.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
genet classification with deep convolutional neural net-
works. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[4] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich. Going deeper with convolutions. CoRR,
abs/1409.4842, 2014.

[6] M. D. Zeiler and R. Fergus. Visualizing and
understanding convolutional networks. CoRR,
abs/1311.2901, 2013.

4

http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/

