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Abstract 
The Tiny ImageNet challenge is a small scale version 

of the full ImageNet classification challenge. We 
investigate how a wide residual network performs on this 
dataset and compare it with a deeper but narrower residual 
network. In addition, with the objective of obtaining a low 
test error rate, we fine-tune a pretrained 18-layer residual 
model. The pretrained model performed well and achieved 
0.324 test error and 72.8 accuracy on the validation set. 

 

1. Introduction 
 

The classification task in computer vision consists of 
assigning a particular category to an image, according to the 
object that it contains. It has seen significant improvements 
in the last decade with the development of convolutional 
neural networks. The role of CNNs in the advance of image 
classification becomes evident when we look at the results 
history of the classification task in the ImageNet challenge. 
The ImageNet challenge is a computer vision competition 
that occurs every year and includes the tasks of image 
classification, localization and detection. The ImageNet 
database is a very large image set with 1000 object 
categories.  

  
We present here our approach to the challenge with two 

goals. The first goal is to investigate whether a wide 
residual network is appropriate for this task and how well it 
performs when compared to deeper residual networks. The 
second goal is to obtain the lowest possible error on a set of 
test images. For the second goal we used a pretrained 
ResNet with 18 layers. The choice of the ResNet, as 
opposed to a wide ResNet for this part was the availability 
of the pretrained model. Training the network with random 
weight initialization, not taking advantage of transfer 
learning, would result in a much less accurate classifier.   

  

2. Tiny ImageNet Challenge 
The Tiny ImageNet database is a small subset of the large 

ImageNet dataset. It consists of 100000 training images 
separated in 200 different classes, as opposed to more than 
1 million training images from 1000 classes on the 
complete ImageNet set. The Tiny ImageNet challenge is a 
classification task with the goal of achieving the lowest 
possible error on a test set. On previous years of this 
challenge the minimum test error rate achieved was around 
20%.  
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Figure 1 – Examples of images and classes on Tiny ImageNet 

 

3. Residual Networks 
 

Residual Networks [2] were designed to make it easier to 
train very deep networks, based on the idea that adding 
layers is necessary to increase classification accuracy. 
Training very deep networks can be difficult because 
accuracy tends to saturate and then quickly degrade. 
Residual layers make the network easier to optimize. The 
logic behind it is that if more layers are stacked into a 
model, it should not perform worse. It could be the case that 
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the original model with less layers achieves the best 
possible accuracy. In that case, adding more layers should 
not change the results, keeping the good performance 
achieved with less layers. What that means is that the 
additional layers would work as an identity map. Residual 
layers are shortcuts in the network that implement those 
identity maps and facilitates such identity maps to be 
trained by learning very small valued weights for the extra 
layers. 

 

 
Figure 2 – Building block of a residual network [2] 

  
A residual network model with 152 layers achieved 

excellent performance and won first place on the ILSVRC 
2015 classification task. ResNet versions with less layers 
were also successful on the Tiny ImageNet challenge on the 
previous year. 

 

4. Wide Residual Networks 
 

Although it is known that very deep networks can 
improve accuracy of a model, it is argued in [3] that it takes 
too many extra layers to be rewarded with just a small 
improvement in accuracy. Experiments with wider, rather 
than deeper, networks have indicated that similar or better 
results than those obtained with very deep neural networks 
can be achieved with shallower networks with increased 
width. Increasing the width of a network means to increase 
the number of filters on the convolutional layers. We 
investigate the performance of a wide ResNet model on the 
Tiny ImageNet challenge and how it compares to a deep 
and narrower model. 

 

5. Technical Approach 
 
6.1 Deep vs. wide 
 

In order to compare the performance of a residual 
network and a wide residual network, we used the 
architecture of ResNet18 and ResNet34 as a starting point. 
The ResNet18 layers were doubled in width to represent a 
wide Residual Network. In addition, some modifications 
were necessary to make the models compatible with the 

Tiny ImageNet dataset, as described on the following 
paragraphs. Pytorch framework was used for the 
implementation. Both models were optimized using 
stochastic gradient descent with 0.9 momentum. 

 
 

Fully connected layer 
 
The fully connected layer was modified to perform 

classification on 200 classes, instead of 1000 classes. 
 
 
First convolutional layer and max pooling layer 
 
The dimensions of the images on the Tiny ImageNet 

dataset are 64x64 pixels, as opposed to the 256 x 256 pixel 
images on the full ImageNet set. Therefore, following the 
steps in [1], we replace the first convolutional layer (conv1) 
that originally consists of 7x7 filters with stride 2 and 
padding 3, by 3x3 filters with stride 1 and padding 1 and 
remove the max pooling layer. The substitutions will keep 
the resulting image size of 56x56 pixels.  
 
 

Data Augmentation 
 
Tiny ImageNet contains 500 training examples per class. 

Compared to other datasets like ImageNet or CIFAR-10, it 
is a relatively small amount of data. In order to artificially 
increase the amount of data and avoid overfitting, we rely 
on data augmentation. Data augmentation was achieved by 
adding randomly cropped training images and horizontally 
flipped versions of those images. Overfitting was also 
avoided by setting the weight decay to an appropriate value. 

 
 
Number of parameters 
 
When comparing the results of the two models it is 

important to make sure that the number of parameters to be 
learned on each one is of the same magnitude. It would not 
be of interest to achieve better accuracy with a shallower 
network if its complexity was much higher than the deeper 
model. Training time is a major constrain on this challenge 
and a model that can be trained faster would be certainly 
preferred. The ResNet34 model, after applying the 
modifications previously mentioned contains 21379572 
parameters. The wide version of the ResNet18 contains 
44857672 parameters, around twice as the first model. In 
order to reduce the number of the parameters to learn on the 
wide network, two convolutional layers – from the first and 
last blocks – were removed. That resulted in a total of 
25683784 parameters, which is comparable to the deeper 
model. 
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Learning rate 
 
    The learning rate was reduced when the training loss 
stopped decreasing. More specifically, there were two 
reductions by 10% during the 20 epochs of training for each 
model. 
 
 

 
Figure 3 - Structure of residual models 

 
 
6.2 Minimizing test error 
 

For the second part of this project, the goal was to 
achieve the lowest possible error rate on the test set. 
Transfer learning was shown to work well on the Tiny 
ImageNet dataset, resulting in better classifiers than the 
ones trained from scratch. Because there were no 
pretrained wide residual networks available with less than 
50 layers, we decided to use a pretrained ResNet18 for the 
challenge. The same layer substitution and data 
augmentation described previously were applied to the 
pretrained model. 

 
 

Pretrained model 
 
    ResNet18 was pretrained on the full ImageNet database. 
Fine tuning of the parameters for the reduced dataset was 
performed as follows. For the first few epochs, only the 
modified layers (first convolutional layer and last fully 

connected layer) were trained and all the other weights were 
kept unchanged. That set the training of the weights on 
those layers on a good direction. After those weights were 
trained for a while, all parameters were allowed to be 
modified. This strategy allowed for fine-tuning of all 
weights of the model, without diverging too much from the 
optimized pretrained configuration.  
 

6. Results 
 

For the following discussion, we will refer to the models 
as model I, model II and model III such that: 

 
• model I: modified ResNet34, trained from scratch 
• model II: wide residual network based on modified 

ResNet18, trained from scratch 
• model III: transfer learning from pretrained ResNet18. 
 
For models I and II, training and validation accuracy 

obtained are shown on Table 1. Results show that there is 
not a significant advantage to use a wide, rather than deep, 
network on this case. Test errors are also similar. The 
decrease on training loss by epoch is presented on Figure 4. 
The expectation was to achieve better results with the wider 
model, but that was not the case. That can be an indication 
that only for very deep residual networks each added layer 
increases accuracy by only a small percentage and it 
becomes more advantageous to increase the number of 
filters per convolutional layer. Another possible reason for 
this result is that, due to time constraints, model 
hyperparameters were not fully optimized and that may 
have ended up giving some advantage to the deeper 
network.  

 
Table 1 – Results for models I and II 

 training 
accuracy 

validation 
accuracy 

Test   
error 

model I 59.9% 53.1% 52.5% 
model II (wide) 64.3% 55.4% 51.2% 

 
 

 
         Figure 4 – Training loss for models I and II 
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Model III performed well and obtained 0.324 test error. 
Accuracy on validation set was 72.8%. It was trained for 12 
epochs and the training loss history is shown on Figure 5.  

 

 
         Figure 5 – Training loss for models III 
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