

 1

Abstract
The Tiny ImageNet challenge is a small scale version

of the full ImageNet classification challenge. We
investigate how a wide residual network performs on this
dataset and compare it with a deeper but narrower residual
network. In addition, with the objective of obtaining a low
test error rate, we fine-tune a pretrained 18-layer residual
model. The pretrained model performed well and achieved
0.324 test error and 72.8 accuracy on the validation set.

1. Introduction

The classification task in computer vision consists of
assigning a particular category to an image, according to the
object that it contains. It has seen significant improvements
in the last decade with the development of convolutional
neural networks. The role of CNNs in the advance of image
classification becomes evident when we look at the results
history of the classification task in the ImageNet challenge.
The ImageNet challenge is a computer vision competition
that occurs every year and includes the tasks of image
classification, localization and detection. The ImageNet
database is a very large image set with 1000 object
categories.

We present here our approach to the challenge with two

goals. The first goal is to investigate whether a wide
residual network is appropriate for this task and how well it
performs when compared to deeper residual networks. The
second goal is to obtain the lowest possible error on a set of
test images. For the second goal we used a pretrained
ResNet with 18 layers. The choice of the ResNet, as
opposed to a wide ResNet for this part was the availability
of the pretrained model. Training the network with random
weight initialization, not taking advantage of transfer
learning, would result in a much less accurate classifier.

2. Tiny ImageNet Challenge
The Tiny ImageNet database is a small subset of the large

ImageNet dataset. It consists of 100000 training images
separated in 200 different classes, as opposed to more than
1 million training images from 1000 classes on the
complete ImageNet set. The Tiny ImageNet challenge is a
classification task with the goal of achieving the lowest
possible error on a test set. On previous years of this
challenge the minimum test error rate achieved was around
20%.

Persian cat

Sombrero

Backpack

Figure 1 – Examples of images and classes on Tiny ImageNet

3. Residual Networks

Residual Networks [2] were designed to make it easier to
train very deep networks, based on the idea that adding
layers is necessary to increase classification accuracy.
Training very deep networks can be difficult because
accuracy tends to saturate and then quickly degrade.
Residual layers make the network easier to optimize. The
logic behind it is that if more layers are stacked into a
model, it should not perform worse. It could be the case that

Wide Residual Network for the Tiny ImageNet Challenge

Letícia Cordeiro

Stanford University
lrsc@stanford.edu

 2

the original model with less layers achieves the best
possible accuracy. In that case, adding more layers should
not change the results, keeping the good performance
achieved with less layers. What that means is that the
additional layers would work as an identity map. Residual
layers are shortcuts in the network that implement those
identity maps and facilitates such identity maps to be
trained by learning very small valued weights for the extra
layers.

Figure 2 – Building block of a residual network [2]

A residual network model with 152 layers achieved

excellent performance and won first place on the ILSVRC
2015 classification task. ResNet versions with less layers
were also successful on the Tiny ImageNet challenge on the
previous year.

4. Wide Residual Networks

Although it is known that very deep networks can
improve accuracy of a model, it is argued in [3] that it takes
too many extra layers to be rewarded with just a small
improvement in accuracy. Experiments with wider, rather
than deeper, networks have indicated that similar or better
results than those obtained with very deep neural networks
can be achieved with shallower networks with increased
width. Increasing the width of a network means to increase
the number of filters on the convolutional layers. We
investigate the performance of a wide ResNet model on the
Tiny ImageNet challenge and how it compares to a deep
and narrower model.

5. Technical Approach

6.1 Deep vs. wide

In order to compare the performance of a residual
network and a wide residual network, we used the
architecture of ResNet18 and ResNet34 as a starting point.
The ResNet18 layers were doubled in width to represent a
wide Residual Network. In addition, some modifications
were necessary to make the models compatible with the

Tiny ImageNet dataset, as described on the following
paragraphs. Pytorch framework was used for the
implementation. Both models were optimized using
stochastic gradient descent with 0.9 momentum.

Fully connected layer

The fully connected layer was modified to perform

classification on 200 classes, instead of 1000 classes.

First convolutional layer and max pooling layer

The dimensions of the images on the Tiny ImageNet

dataset are 64x64 pixels, as opposed to the 256 x 256 pixel
images on the full ImageNet set. Therefore, following the
steps in [1], we replace the first convolutional layer (conv1)
that originally consists of 7x7 filters with stride 2 and
padding 3, by 3x3 filters with stride 1 and padding 1 and
remove the max pooling layer. The substitutions will keep
the resulting image size of 56x56 pixels.

Data Augmentation

Tiny ImageNet contains 500 training examples per class.

Compared to other datasets like ImageNet or CIFAR-10, it
is a relatively small amount of data. In order to artificially
increase the amount of data and avoid overfitting, we rely
on data augmentation. Data augmentation was achieved by
adding randomly cropped training images and horizontally
flipped versions of those images. Overfitting was also
avoided by setting the weight decay to an appropriate value.

Number of parameters

When comparing the results of the two models it is

important to make sure that the number of parameters to be
learned on each one is of the same magnitude. It would not
be of interest to achieve better accuracy with a shallower
network if its complexity was much higher than the deeper
model. Training time is a major constrain on this challenge
and a model that can be trained faster would be certainly
preferred. The ResNet34 model, after applying the
modifications previously mentioned contains 21379572
parameters. The wide version of the ResNet18 contains
44857672 parameters, around twice as the first model. In
order to reduce the number of the parameters to learn on the
wide network, two convolutional layers – from the first and
last blocks – were removed. That resulted in a total of
25683784 parameters, which is comparable to the deeper
model.

 3

Learning rate

 The learning rate was reduced when the training loss
stopped decreasing. More specifically, there were two
reductions by 10% during the 20 epochs of training for each
model.

Figure 3 - Structure of residual models

6.2 Minimizing test error

For the second part of this project, the goal was to
achieve the lowest possible error rate on the test set.
Transfer learning was shown to work well on the Tiny
ImageNet dataset, resulting in better classifiers than the
ones trained from scratch. Because there were no
pretrained wide residual networks available with less than
50 layers, we decided to use a pretrained ResNet18 for the
challenge. The same layer substitution and data
augmentation described previously were applied to the
pretrained model.

Pretrained model

 ResNet18 was pretrained on the full ImageNet database.
Fine tuning of the parameters for the reduced dataset was
performed as follows. For the first few epochs, only the
modified layers (first convolutional layer and last fully

connected layer) were trained and all the other weights were
kept unchanged. That set the training of the weights on
those layers on a good direction. After those weights were
trained for a while, all parameters were allowed to be
modified. This strategy allowed for fine-tuning of all
weights of the model, without diverging too much from the
optimized pretrained configuration.

6. Results

For the following discussion, we will refer to the models
as model I, model II and model III such that:

• model I: modified ResNet34, trained from scratch
• model II: wide residual network based on modified

ResNet18, trained from scratch
• model III: transfer learning from pretrained ResNet18.

For models I and II, training and validation accuracy

obtained are shown on Table 1. Results show that there is
not a significant advantage to use a wide, rather than deep,
network on this case. Test errors are also similar. The
decrease on training loss by epoch is presented on Figure 4.
The expectation was to achieve better results with the wider
model, but that was not the case. That can be an indication
that only for very deep residual networks each added layer
increases accuracy by only a small percentage and it
becomes more advantageous to increase the number of
filters per convolutional layer. Another possible reason for
this result is that, due to time constraints, model
hyperparameters were not fully optimized and that may
have ended up giving some advantage to the deeper
network.

Table 1 – Results for models I and II

 training
accuracy

validation
accuracy

Test
error

model I 59.9% 53.1% 52.5%
model II (wide) 64.3% 55.4% 51.2%

 Figure 4 – Training loss for models I and II

 4

Model III performed well and obtained 0.324 test error.
Accuracy on validation set was 72.8%. It was trained for 12
epochs and the training loss history is shown on Figure 5.

 Figure 5 – Training loss for models III

7. References

[1] H. Kim, Residual Networks for Tiny ImageNet. CS231n,

2016
[2] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning

for image recognition. arXiv:1512.03385, 2015.
[3] S. Zagoruyko, N. Komodakis, Wide Residual Networks.

arXiv:1605.07146

