
The Power of Inception: Tackling the Tiny ImageNet Challenge

Pedro M. Milani
Stanford University

488 Escondido Mall, Stanford CA
pmmilani@stanford.edu

Abstract

The ImageNet Challenge is a fundamental tool to de-
velop and benchmark visual recognition algorithms. For the
CS-231N project, I worked on the Tiny ImageNet Challenge,
which is a smaller version of the aforementioned competi-
tion. After a survey of previous work on the subject, I de-
cided to use deep convolutional neural network algorithms
based on the inception paradigm, first proposed by Szegedy
et al. [18]. The goal of the present work is to maximize
the top-1 accuracy on the test set. My final model obtained
30.9% top-1 test error, which put me tied for first place in
the 2017 class leaderboard.

1. Introduction
The ImageNet Large Scale Visual Recognition Chal-

lenge [14] is a competition where teams have access to a
fixed dataset (1.2 million training images, 50k validation
images, and 100k test images) and try to perform visual
recognition tasks as well as possible on the test set. For
the image classification task, each example belongs to one
of 1000 possible categories. It is a critical benchmark of the
current visual recognition algorithms, and at the same time
an important tool for developing improved ones.

The Tiny ImageNet Challenge consists of a miniature
version of the ImageNet Challenge, with fewer and smaller
images sampled from the ImageNet dataset. It is therefore
expected that appropriately adapted versions of the algo-
rithms that perform well on ImageNet will also perform
well on the classification task at hand. The objective of the
present work is to maximize the top-1 test accuracy on Tiny
ImageNet, within CS-231N time and computational con-
straints. So, it is important to analyze some of the previous
successful approaches to the ImageNet Challenge.

Until 2011, hand-crafted features were extracted from
images and used to predict their labels [3]. In 2012,
Krizhevsky et al. made a groundbreaking improvement in
classification accuracy by using deep convolutional neural
networks (CNNs) [10]. Their AlexNet model obtained a

Figure 1. Comparison of different models taken from Canziani et
al. [2]. Inception-v3 has the second highest accuracy at relatively
modest computational cost and number of parameters.

single-crop, single-model top-1 validation error of 40.7%
in the ImageNet Challenge. Ever since, CNNs have been
used for most visual recognition tasks. Several improved
architectures were developed following AlexNet. In 2015,
He et al. [7] proposed ResNet, which consists of very deep
networks using residual connections to assist gradient back-
propagation. They obtained 21.4% 10-crop top-1 valida-
tion error on ImageNet. In the same year, Szegedy et al.
debuted GoogleNet [18], which used inception layers as a
way to perform convolutions efficiently. Follow-up papers
improved on this idea: Inception-v3 [19] and Inception-v4
[17] obtained, respectively, 19.8% and 18.7% 12-crop top-1
validation errors on ImageNet.

Given the abundance of models that have been used re-
cently, a survey of the most recent ones, along with their
strengths and weaknesses, would be important to deter-
mine which one is the best choice for the current project.
Canziani et al. [2] presents such survey. Figure 1 is taken
from [2] and compares different architectures in terms of
single-crop, single-model top-1 validation accuracy on Im-
ageNet (y-axis), computational cost (x-axis), and number

1



of parameters (size of the circle). The models with high-
est accuracy are Inception-v3 and Inception-v4. The lat-
ter requires significantly more operations and a somewhat
higher number of parameters to achieve only a modest im-
provement over the former. Thus, to achieve the objective
of maximizing top-1 accuracy on Tiny ImageNet under the
tight time and computational constraints of this project, I
will base my methods on the Inception-v3 architecture.

Besides the previous work done on the ImageNet chal-
lenge, CS231-N students have worked on the Tiny Ima-
geNet Challenge before. Some of their results and ap-
proaches might serve as inspiration and as a baseline for the
current project. Kim [9] reported the best openly accessi-
ble results of the 2016 competition. His approach involved
using residual networks (inspired by ResNet). He both de-
signed and trained a model from scratch, and applied trans-
fer learning from pre-trained ResNet networks. The best
results were obtained from the latter method: his lowest
top-1 test error was 31.1%. Zhai [20] also compared train-
ing from scratch versus transfer learning from pre-trained
models. His architectures were based upon ResNet [7, 6]
and VGG [15, 4]. Even though his best reported test accu-
racy was inferior to Kim’s (44.6% top-1 error), he reached
the same conclusion: transfer learning produces the best re-
sults.

The remaining of the paper will describe my attempts to
attain the goal of maximizing the test accuracy on Tiny Im-
ageNet. In Section 2, I briefly discuss the dataset used. Sec-
tion 3 is dedicated to designing and training my own model
from scratch, and presents the relevant results. Section 4
describes my transfer learning attempts and also presents
results. Finally, Section 5 contains the conclusion and sug-
gestions for future improvement.

2. Dataset
In the Tiny ImageNet Challenge, the dataset contains

square images, of 64x64 pixels. Most of the images have
3 channels for color, RGB, meaning they are 64x64x3 ar-
rays. However, around 1.8% of the examples are grayscale
images, i.e. 64x64x1 arrays. For the sake of simplicity, all
the grayscale images are immediately converted to RGB by
replicating the pixel values across the three channels. Each
image belongs to exactly one out of 200 categories. The
training set contains 100k images (500 from each category),
and the validation and test sets have 10k images each (50
from each category).

Figure 2 shows two examples from six distinct classes,
picked from the training set of Tiny ImageNet. Some of the
challenges are evident. First, the images are not very highly
resolved (only 64x64), which makes details hard to spot.
Moreover, while the algorithm is expected to perform some
relatively easy, coarse grain classification (for example, dis-
tinguishing a cat from a car), it is also expected to perform

Figure 2. Example images from the training set of Tiny ImageNet

some very fine classification (for example, distinguishing a
sports car from a convertible), which even humans (at least
yours truly...) would have trouble performing. Since the
top-1 accuracy is the objective on the leaderboard, there
is no consolation in outputting Persian cat as the predicted
class when Egyptian cat is the ground truth label, even if the
model predicts Egyptian cat as the second most likely class
by a small margin. Since there are only 500 images per class
on the training set (compared to over 1000 for the actual Im-
ageNet challenge), I expect models trained from scratch to
be more sensitive to overfitting as well. Finally, since the
images from Tiny ImageNet are smaller versions of Ima-
geNet images, one can expect them to be noisy. In fact,
Hansen [5] shows examples of images from the Tiny Im-
ageNet database in which he identifies “scaling artifacts”,
“loss of texture”, “loss of crucial information due to crop-
ping”, and “difficulty of locating small objects” [5]. Thus,
even though the competition is on a smaller scale than Im-
ageNet, the classification task is still significantly challeng-
ing.

3. Training a Model from Scratch
As explained in Section 1, I have decided to focus my ef-

forts around the inception design, particularly the one used
by Szegedy et al. in Inception-v3 [19]. This was chosen not
just because of the very high accuracy, but also because of
the modest model size and computational cost (crucial due
to time and computational constraints).

3.1. Architecture

Figure 3 shows the relevant model architectures. Fig-
ure 3(a) represents the architecture used in Inception-v3.
Note that they use 6 standard convolutional layers, and then
use a total of 12 inception layers, of slightly different de-
signs. The schematic shown is simplified: note, for exam-
ple, that at training time the model uses a side classifier (not
shown), that injects gradients between the last of the incep-
tion type-2 layers and the inception dim layer. Also, they
use a dropout layer [16] between the output of the last av-
erage pooling layer and the fully connected layer. For more

2



(a) Inception-v3 (b) My architecture

Figure 3. Architectures employed

details on the architecture, the reader is encouraged to con-
sult [19].

Some more needs to discussed about the particular in-
ception layers. Schematics of the distinct layers used are
shown in Fig. 4, taken directly from [19]. The inception lay-
ers were developed specifically to perform powerful convo-
lutional operations while minimizing the number of param-
eters and computation required. They use 1x1 convolutions
to reduce the number of input channels and then perform
different operations in parallel, which are concatenated in
the output. Stacking 2 3x3 convolutions, for example, pro-
duces the same receptive field as a 5x5 convolution, but
uses fewer parameters (a 28% reduction). The same is valid
for the asymmetric convolutions: stacking a 1x7 and a 7x1
layer is much more efficient than a single 7x7 filter. Finally,
the “inception dim” layer is a layer that uses the inception
paradigm to reduce the spatial dimension of the input, while
increasing its number of channels. Szegedy et al. argue
that this particular design is more efficient than an equiva-
lent (convolution → pooling) combination, and avoids the
informational bottleneck of an equivalent (pooling→ con-
volution) combination [19].

My own architecture was designed based on Inception-
v3, and it is shown on Fig. 3(b). It contains the same in-
ception layers as Inception-v3, but it is shallower and nar-
rower: the number of layers and number of filters was re-
duced when compared to Fig. 3(a). This was done to re-
duce computational cost and at the same time produce a
smaller model with less capacity which would be less prone
to overfitting. The number of filters in each step was cho-
sen such that, as a general principle, the number of chan-
nels of the activations increased as the depth of the network
increased and their spatial dimensions decreased, as sug-
gested by [19]. Also note that my architecture is designed
for a differently sized input: the input image to Inception-

(a) Inception type-1 (b) Inception type-2. n=7 is used

(c) Inception type-3 (d) Inception dim

Figure 4. Inception layers used in Inception-v3. m x n refers to
convolutional layers with kernels of height m and width n. Con-
catenations are performed depth-wise between activations of iden-
tical spatial dimensions

v3 is 299x299, while the input image to my architecture is
64x64.

Unlike in Inception-v3, I did not use a side-classifier,
since my network was not as deep. The ReLU activa-
tion was used after every convolution due to its simplicity
and efficacy [10]. As suggested in [19], I also used Label
Smoothing Regularization combined with the cross-entropy
softmax loss for training. This means that, to evaluate the
training loss which needs to be optimized, a cross-entropy
loss was evaluated between the softmax function of the
scores generated by my classifier and a smoothed ground-
truth: for the i-th example, this consists of a probability
distribution function given by Eq. 1. Note that the number
of classes is K = 200, I picked ε = 0.1, like suggested by
Szegedy et al. [19], and δyi, j is the Kronecker delta, which
is 1 if the class j is the correct class for the i-th example, and
0 otherwise.

qi,j = ε× 1

K
+ (1− ε)× δyi, j (1)

3



3.2. Training details

The architecture was coded and trained using Tensor-
Flow, Google’s deep learning system [1]. Everything was
performed on Google Cloud, using 1 NVidia Tesla K80
GPU. Even with my reduced model and GPU acceleration,
computational time quickly became a bottleneck for model
optimization. For early testing, I sub-sampled the training
and validation sets (by a factor of 4) but once I used the
full dataset, the training characteristics of the architecture
changed (accuracies, losses, speed of training) so I could
not use a reduced dataset to reliably tune the architecture
and hyperparameters of the full scale problem. Training on
a few epochs of the full dataset is also not entirely appro-
priate, since it was reported (e.g. in [8] and [19]), and I also
observed that, some choices of hyperparameters and archi-
tectures can yield better results in the first few epochs, but
worse results at convergence. Since training of my model
took 20-30 min per epoch (and it took anywhere between
20 and 50 epochs for the validation loss to reach a plateau),
it was clear that good hyperparameter tuning would be all
but impossible within the time constraints of CS-231N.

With this in mind, I adopted a few ideas. First, I de-
cided to make aggressive use of batch-normalization [8].
A (spatial) batch normalization layer was added before ev-
ery single ReLU unit. This is known to accelerate training,
and it also makes training less sensitive to initial conditions
and hyperparameters picked (for instance, in homework 2
this quarter it was shown that the sensitivity of the final
validation accuracy with respect to the learning rate was
greatly reduced when batch normalization was employed).
As part of the recommendations made by Ioffe et al. when
batch normalization is employed, I also decided not to use
the dropout layer [8]. For optimization, I used the Adam
scheme with default TensorFlow parameters. I tested a few
learning rates within a reasonable range for the first few
epochs and settled on 1 × 10−3, decayed by 0.9 at every
epoch. With a fixed learning rate, I tried a few different
weight decays and settled on 0.08. The hyperparameters
are most likely not optimal, but with the limited time I had,
this was the best I could do.

3.3. Results

The architecture shown in Fig. 3(b) was trained from
scratch as described in the previous section. Figure. 5(a)
shows the evolution of a running average of the minibatch
training accuracy in blue and the validation accuracy on the
full validation set versus epoch. This network will be re-
ferred to as “Baseline”. The best recorded model achieved
48.5% top-1 validation accuracy. Even though hyperparam-
eters were not properly tuned, a respectable accuracy was
achieved given the difficulties of the problem as discussed
in Section 2. However, we note that the model is strongly
overfitting the training data: at 30 epochs, the training accu-

(a) Initial model (Baseline)

(b) Higher regularization (Regularized)

Figure 5. Training and validation accuracy as model trains.

racy was already above 80% and steadily increasing, while
the validation error had plateaued at just under 50%. This
hints that some more regularization techniques might im-
prove the ability of our model to generalize to the validation
set.

This lead me to a second attempt, of training the same
architecture with extra regularization. Two changes were
made: first, I added a dropout layer before the fully con-
nected layer [16], with keep probability of 80%. This
should increase generalization, but increase the number of
epochs necessary for convergence (and thus increase train-
ing time). Second, I added data augmentation at train-
ing time. This means that a pre-processing step was
added to each batch before performing forward and back-
propagation on it: each image was randomly flipped left-
right (with probability 50%) and its brightness and contrast
were randomly adjusted. The training parameters described
before were kept identical, except that the initial learning
rate was doubled and it decayed by a factor of 0.9 once
every two epochs (since we expect it to take more epochs
and we don’t the learning rate to vanish). This network
will be referred to as “Regularized”. The results are shown
in Fig. 5(b). As expected, the model is not overfitting as

4



severely. But, the highest top-1 validation accuracy achieve
was only 46.1%, over 2% lower than before! This was un-
expected and disappointing; however, it can be explained
by the lack of hyperparameter tuning. If I had months and
more computational power, I could have tuned the hyper-
parameters (like learning rate, learning rate decay, weight
decay, and dropout keep probability) to much closer to their
optimal value. Then, I expect that the second setup (with
more regularization) would have been able to achieve higher
top-1 validation accuracy than the first. Note that the regu-
larized model took over 30 hours to train on a single GPU.

3.4. Ensemble

As a final attempt to improve the top-1 validation accu-
racy, I used ensemble averaging of the predictions of dif-
ferent networks. A simple trick, that requires virtually no
extra computation, is to save all the weights of the network
during the same training run, at different epochs. During a
training run, the program would keep track of the best vali-
dation accuracy seen so far. If the new validation accuracy,
calculated after some number of training steps, surpassed
the best seen so far, then the new weights would be saved
on the hard disk. A maximum number of 20 models can be
saved at once (thus, when the model improves on the best
accuracy seen so far for the 21st time, the first saved file
would be overwritten). This also guarantees that the best
accuracy ever seen is saved.

At test time, each of the 20 networks is loaded and pro-
duces its own score for each validation/test example. The
overall ensemble prediction is done by taking the softmax
function of the scores, summing them for all the N net-
works of the ensemble, and predicting the class with the
maximum probability. This is shown in Eq. 2. Indices i,j,k
represent, respectively, the particular training example, the
class, and the network belonging to the ensemble. The vari-
able scoresi,j,k is the result from the fully connected layer
at the end of the network, and pi,j,k is the probability gen-
erated by applying the softmax function to scoresi,j,k. Fi-
nally, ŷi is the predicted label from the ensemble for a par-
ticular training example.

pi,j,k =
exp(scoresi,j,k)∑
j

exp(scoresi,j,k)
,

ŷi = argmax
j

(
∑
k

pi,j,k).

(2)

I investigated how many networks should be added to the
ensemble to maximize the top-1 validation accuracy. Each
new network should decrease the variance; but, individu-
ally, it will have a lower accuracy than the previous one
added, so at some point those two effects balance out. Nat-
urally, the first network that is added is the one with highest
validation accuracy; then, the one with the second highest

Figure 6. Top-1 Validation accuracy versus number of networks
in the ensemble. The point marked in red represents the highest
accuracy obtained.

and so on. If the 20th network to be added to the ensemble
has much lower accuracy than the first, it might be better
to leave it out. Figure 6 shows the results of this analy-
sis for the Baseline network. Note that ensembling allows
us to increase the accuracy significantly at no extra cost!
Just by saving different snapshots of the model during a sin-
gle training run, the top-1 validation accuracy can increase
from 48.5% to 52.2%. Also, my initial conjecture was right:
adding more networks is not always advantageous. In this
case, the highest accuracy was obtained from an ensemble
of the best 9 networks that were saved. Interestingly, such
strong benefits were not observed when I constructed en-
sembles of the more regularized network: the top-1 valida-
tion accuracy only increased from 46.1% (single best net-
work) to 46.8% (best ensemble). I hypothesize that ensem-
bling has a regularizing effect: by averaging different net-
works, a smoothed out prediction is made that better gener-
alizes to unseen data. Thus, a network that overfits strongly
would benefit from ensembling much more than one that
doesn’t.

Table 1 summarizes the results obtained in this section.
Note that only the ensembles were submitted to the evalua-
tion server to determine the test error.

Table 1. Summary of the errors of my own networks

Top-1 Val. Error Top-1 Test Error
Baseline 51.5% n/a

Baseline ens. 47.8% 52.3%
Regularized 53.9% n/a

Regularized ens. 53.2% 57.2%

5



Figure 7. Schematics showing how transfer learning is performed
in the context of the present work.

4. Transfer Learning
Transfer learning consists of using models that were

trained for a certain task and leveraging the knowledge that
they acquired on a different, but related task [12]. This
can be highly advantageous when there is not much data
available for training directly on the related task, or when
it is desired to leverage powerful models that would other-
wise take several weeks to properly train and cross-validate.
Given the computational constraints that were discussed in
the previous section and the similarity between Tiny Ima-
geNet (the task at hand) and ImageNet (a dataset in which
state-of-the-art models were trained), it is unsurprising that
previous CS-231N students found that transfer learning was
the technique that yielded the best results for Tiny Ima-
geNet.

In this section, I based a significant part of the code on
online tutorials provided by Hvass Laboratories [13]. They
also provided utility functions on an open-source GitHub
account, which was used in the context of this work [13].
Unless otherwise specified, I used the same dataset, training
procedures, hardware, and software packages specified in
Sections 2 and 3.

4.1. Methods

For the task at hand, I downloaded the pre-trained
Inception-v3 model from TensorFlow.org [1], which was
described before and is shown in Fig. 3(a). The last fully
connected layer (going from 2048 neurons to 1000 class
scores) is removed and the rest of the network serves as
a feature extractor: an image is fed in, and a set of 2048
activations is produced (the transfer values). These activa-
tions will in turn be used to classify Tiny ImageNet images
through a fully connected layer, which will be trained on the
present dataset. The flowchart in Fig. 7 shows this process
graphically. Note that one difficulty is that the Inception-
v3 architecture takes in 299x299 images, while ours are
64x64. There are different approaches for dealing with this.
I chose the default behavior of the pre-trained Inception
model: the images are re-scaled using bilinear interpola-
tion before being fed into the network. Visually, the images
seem smoother and, in fact, less noisy than the originals.
This can be seen in Fig. 8.

Note that I kept the pre-trained weights unchanged and
did not attempt to finetune them. This allowed training to be

(a) Original (b) Re-scaled

Figure 8. Example of the changes produced by re-scaling with bi-
linear interpolation. (a) is 64x64 and (b) is 299x299

much faster. Because of this, I was able to much more ef-
fectively tune hyperparameters and experiment with differ-
ent options, which will be discussed in the following sec-
tions. For future work, finetuning the pre-trained weights
(after the last fully connected layer is trained) can be a vi-
able strategy to achieve slightly better performance than re-
ported here.

Again, I used the Adam optimization scheme with de-
fault parameters. I tried a few different batch sizes (ranging
from 25 to 100) and the final results seemed virtually in-
dependent of it (thus, training was always performed with
a mini-batch of 100). I also experimented with adding ex-
tra layers between the transfer values and the scores (for
instance, transfer values → fully connected → ReLU →
fully connected → scores), but that did not increase vali-
dation performance. I hypothesize that this is because the
pre-trained parameters were optimized to produce transfer
values that can be directed translated into scores by a single
fully connected layer; thus, adding complexity should not
improve results.

4.2. Results

The first attempt (vanilla transfer learning) just involved
using the transfer values taken from 100k training images
to train the linear layer with a cross-entropy softmax loss
(using the same label smoothing regularization described
before). A thorough cross-validation was performed on the
learning rate, learning rate decay, and weight decay (i.e.,
L2 regularization strength) using the validation set, and the
final predictions were submitted on the test set. The accu-
racy values were much higher than obtained in Section 3:
in under 5 minutes of training, top-1 validation accuracies

6



Figure 9. Training curve for vanilla transfer learning.

over 70% were obtained! Clearly, the features produced
by the pre-trained Inception-v3 network were very effective
in distinguishing the images. In vanilla transfer learning,
the highest accuracy obtained was 74.7% on the validation
set and 66.8% on the test set (with initial learning rate of
6.5 × 10−4, decayed by 0.713 per epoch, and L2 regular-
ization strength of 0.0116). Note that here, taking ensemble
of different snapshots during training was ineffective: the
validation accuracies were virtually unchanged (oscillating
at most one tenth of a percent up or down). Since the model
doesn’t overfit much, this observation strengthens the hy-
pothesis of Section 3.4. The reported values refer to the
model that obtained the highest top-1 validation accuracy
(whether or not it is an ensemble). The training curve for
vanilla transfer learning is shown in Fig. 9. Note that just
training the last layer is much faster (10 epochs is sufficient
for convergence). There is also some overfitting, since the
training accuracy is consistently a little higher than the val-
idation one.

The Inception-v3 model (just like many of the state-of-
the-art models) is trained using data-augmentation. At test
time, they are usually fed different crops of the test image,
then they average the predictions for each crop, and obtain
a single prediction for that image. This is done to average
out data augmentation effects introduced at train time and
also to allow the algorithm to have a closer look at differ-
ent regions of the image. According to Kim, this simple
test time modification can yield 1-2% better performance
[9]. To try to address the modest overfitting observed be-
fore, I also added a dropout layer between the transfer val-
ues and the fully connected layer with keep probability of
0.8 (same used in Inception-v3). A model using 10-crops
at test time plus the dropout layer will be referred to as
the Transfer Learning v2. The 10-crops include the origi-
nal image (64x64), 4 square crops at each of the four cor-
ners (56x56), and the left-right flipped versions of these; the
predictions from different crops are combined as explained
in section 3.4. A new cross-validation was performed and

Figure 10. Training curve for transfer learning v3.

the best hyperparameters for this configuration were used.
The best top-1 accuracies obtained were 76.1% and 68.6%
on the validation and test set respectively. For brevity, the
training curve will not be shown, but it is similar to Fig. 9,
albeit with less overfitting and slightly more epochs to con-
vergence.

Finally, inspired by what is done in Inception-v3 and
Kim [19, 9], I decided to also use data augmentation dur-
ing training. This means that, at train time, the images
have their brightness and contrast randomly adjusted, and
are randomly cropped (either the original 64x64 image is
kept, or a corner crop of 56x56 is generated). The train-
ing showed that the validation accuracy was higher than the
training accuracy! This hints that too much regularization
was used, and leads to the conclusion that, with data aug-
mentation, dropout becomes redundant. So, I removed the
dropout layer that was added in v2. This new model (10-
crop testing, data augmentation for training, no dropout)
will be referred to as Transfer Learning v3. The best top-1
accuracies obtained were 76.7% and 69.1% on the valida-
tion and test set respectively. The training curve, shown in
Fig. 10, shows that I finally obtained an optimal training
procedure, with no overfitting. This is my final model, with
which I will enter the competition.

Table 2 summarizes the best results obtained by trans-
fer learning techniques. For comparison, the best results
from last year and the best result from Section 3 are also
displayed.

Table 2. Summary of different model performances.

Top-1 Val. Error Top-1 Test Error
Best from Kim [9] 24.99% 31.1%
Baseline ens. 47.8% 52.3%
TL Vanilla 25.25% 33.2%
TL v2 23.89% 31.4%
TL v3 23.30% 30.9%

7



Figure 11. Transfer values after tSNE dimensionality reduction.

4.3. Analysis

In this section, I will interpret the predictions of the
transfer learning model to gain insight into its performance.
First, one can visualize the transfer values produced by the
Inception-v3 pre-trained model. This is done by taking the
2048-dimensional vector and reducing its dimensionality to
2 so it can be plotted in 2D. t-SNE, introduced by Maaten
et al., is considered an effective technique to do so [11]. I
applied it to all training examples of 7 distinct classes: con-
vertible (purple), sports car (red), plunger (cyan), Egyptian
cat (light green), Persian cat (brown), golden retriever (or-
ange), and bullet train (dark blue). The 2D arrays are then
plotted in Fig. 11: each example is a dot, and they are col-
ored according to their classes. There are a total of 500 dots
of each color.

Note that the transfer values are mostly clustered in dif-
ferent locations according to their classes. For example, the
bullet train class, in dark blue, is clustered on the bottom
right, well separated from other classes (except for a few
outliers). The separation between Egyptian cat and Per-
sian cat (light green from brown) is much better than I ex-
pected, which indicates that the algorithm is well-suited to
distinguish the two types of cat (probably much better than
I am...). The golden retriever class (orange, in the center
right) is also pretty far away from the two cat classes. I con-
jecture that, since the full ImageNet database has so many
different types of animals in its training set (and in partic-
ular, several breeds of dogs and cats), Inception-v3 became
very good at distinguishing them since it was trained with
all that data. The only classes whose transfer values have
significant overlap are convertible and sports car (purple and
red, both clustered in the top right). Some of this cluster-
ing might be due to the dimensionality reduction algorithm
destroying some of the available information. However, I
would expect these two classes to be mistaken somewhat
often by my transfer learning methodology.

As another way of interpreting the transfer learning algo-

rithm’s limitations, I analyzed the predictions of the transfer
learning v3 method on the validation set. Its top-1 error rate
was 23.3% on average, but different classes contributed to
this figure differently. The class with most mistakes was
the plunger: a whooping top-1 56% error rate on the val-
idation set. Looking at examples from Fig. 2, it is clear
that plungers are usually small in the picture and show up
in many different contexts. This explains why the errors
are not focused on a few classes: throughout the 50 valida-
tion images where plunger was the ground truth, the model
predicted a total of 21 distinct classes (plunger 22 times,
and 20 incorrect categories 28 times). This is in contrast to
the convertible class: it was misclassified 42% of the time,
but only 8 incorrect classes were predicted. The errors fo-
cused on the model mistaking one for either a sports car or a
beach wagon (14% of the time each). The model was most
accurate with the bullet train class: only 1 out of 50 valida-
tion images was misclassified. The reason, again, is evident
from Fig. 2: bullet trains usually occupy most of the image
and have very peculiar visual features. Besides, no class in
the dataset is semantically similar to it.

5. Conclusions and Future Work
In the present paper, I described my approach to maxi-

mizing the accuracy on the CS-231N Tiny ImageNet Chal-
lenge. Section 1 presented the problem statement and de-
scribed previous work that was performed in this area. In
Section 2, the dataset was described, and Section 3 and 4
described two parallel approaches. The best top-1 test er-
ror obtained was 30.9%, which put me tied for first place
in CS231-N (as of 6/11/2017). Through the present work, I
had the opportunity to study state-of-art visual recognition
algorithms and try to develop my own, in an attempt to per-
form a very challenging classification task. I also gained in-
sight into how the ImageNet challenge works and what are
the possible techniques one might try to obtain incremental
improvements in CNN accuracy.

Future improvement, given time and computational con-
straints, should focus on perfecting transfer learning tech-
niques. Something that should be attempted is to finetune
the whole network instead of keeping it fixed while training
just the weights of the last fully connected layer. Another
observation from the current work is that the accuracy on
the test set seems to be considerably lower than the accu-
racy on the validation set. This was observed in previous
Tiny ImageNet entries (e.g. in Kim’s results [9]), but not in
ImageNet entries (in most papers, test and validation accu-
racies are so close that they are discussed interchangeably,
e.g. in [10]). If one manages to close this gap, the accu-
racy on the leaderboard (based on test error) would increase
significantly. Finally, using different pre-trained networks
(such as Inception-v4 and Inception-ResNet from Szegedy
et al. [17]) might also produce marginally better results.

8



References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), pages 265–283,
2016.

[2] A. Canziani, A. Paszke, and E. Culurciello. An Analysis
of Deep Neural Network Models for Practical Applications.
CoRR, abs/1605.07678, 2016.

[3] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman.
The devil is in the details: an evaluation of recent feature
encoding methods. In British Machine Vision Conference –
BMVC 2011, 2011.

[4] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convo-
lutional nets. CoRR, abs/1405.3531, 2014.

[5] L. Hansen. Tiny ImageNet Challenge Submission. CS-231N
Final Project Report, 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rec-
tifiers: Surpassing Human-Level Performance on ImageNet
Classification. CoRR, abs/1502.01852, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[8] S. Ioffe and C. Szegedy. Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate
Shift. CoRR, abs/1502.03167, 2015.

[9] H. Kim. Residual Networks for Tiny ImageNet. CS-231N
Final Project Report, 2016.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[11] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(Nov):2579–2605,
2008.

[12] S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE Transactions on knowledge and data engineering,
22(10):1345–1359, 2010.

[13] M. E. H. Pedersen. Hvass Laboratories GitHub and
Tutorials. https://github.com/Hvass-Labs/
TensorFlow-Tutorials. Accessed: 2017-06-10.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[15] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural

Networks from Overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

[17] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,
Inception-ResNet and the Impact of Residual Connections
on Learning. CoRR, abs/1602.07261, 2016.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going Deeper with Convolutions. CoRR, abs/1409.4842,
2014.

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the Inception Architecture for Computer Vision.
CoRR, abs/1512.00567, 2015.

[20] A. Zhai. Going Deeper on the Tiny ImageNet Challenge.
CS-231N Final Project Report, 2016.

9

https://github.com/Hvass-Labs/TensorFlow-Tutorials
https://github.com/Hvass-Labs/TensorFlow-Tutorials

