
Deep Convolutional Neural Networks for Tiny ImageNet Classification

Hujia Yu
Stanford University
hujiay@stanford.edu

Abstract

In this project, I approached image classification prob-
lem by implementing and training from scratch three state-
of-art model structures, AlexNet, GoogLeNet, and ResNet
on the TinyImageNet dataset. After fine-tuning and evaluat-
ing the performance on all three models, I used my best per-
forming model, which is ResNet-20 with 55.4% validation
accuracy, on the test set, and achieved test accuracy of 45%
(error rate of 55%). During this process, I found out that
most of the models trained from scratch tend to plateau at
around or below 50% validation accuracy. It turns out that
training state-of-art model architectures from scratch on re-
duced dimension of image datasets do not have as good per-
formances as the original models on the Large Scale Im-
ageNet Challenge. My intuitions of this phenomenon are
that image downsampling causes loss of details and ambi-
guity during training, and constraint on computing power
and model capacity also determined how far the model ac-
curacies could go. For future improvement, I will improve
on computing power as well as model simplicity to allow for
more efficient training. I will also look into my best model,
ResNet-20, to see if residual connections significantly im-
prove fine-tuning and training efficiency in general.

1. Introduction

Our brain is great at vision. It can easily tell apart a dog
and a cat, read a sign, or recognize detailed objects in a pic-
ture. But these are actually really hard problem to solve
for a computer. It only seems easy because our brain is in-
credibly good at understanding images. Therefore, a large
amount of research work has been put in to the field of com-
puter vision. Convolutional networks(ConvNets) have en-
joyed a great success in large-scale image and video recog-
nition, and it has become popular due to large image dataset
availability, such as ImageNet(Deng et al., 2009)[10], and
high-power computing systems, such as GPUs. Although
ConvNets were originally introduced over 20 years ago,
improvements in network structure and computer hardware
have enabled the training of truly deep ConvNets only re-

cently. Since the 2012 ImageNet competition winning en-
try by Krizhevsky et al.[1], their network AlexNet has been
applied to variety of computer vision tasks, for example to
object detection. Successful models like AlexNet has great
influence on research that focused on deeper and better-
performing network structures. In 2014, the quality of net-
work architecture significantly improved by using deeper
and wider networks. VGGNet[7] and GoogLeNet[5] both
yielded high performance in ILSVRC 2014 classification
challenge. This paper uses dataset from Tiny ImageNet
Challenge, which is a simplified version of Large Scale Vi-
sual Recognition Challenge 2016(ILSVRC2016)[10]. The
details of the dataset is described in the section below. In
this paper, I trained from scratch the reduced capacity mod-
els of GoogLeNet, AlexNet, and ResNet[6] on the dataset,
and I explored and compared the results to fine-tune and
improve the models. As in ImageNet classification, the ob-
jective of training models is to attain best performance on
image classification problem.

2. Related Work

ConvNets architectures such as GoogLeNet, VGGNet
and AlexNet are highly successful architectures in recent
ILSVRC, and they have spurred a great interest in ConvNets
architecture improvements. VGGNet has the compelling
feature of architectural simplicity, but it is computationally
expensive and inefficient. On the other hand, the Inception
architecture of GoogLeNet performs well under strict con-
straints on memory and computation power. It employed
only 5 million parameters, which represented a 12X reduc-
tion with respect to AlexNet, which uses 60 million param-
eters. VGGNet employed around 3X more parameters than
AlexNet. Recently, SqeezeNet is a deep neural network that
achieves accuracy level of AlexNet but with 50x fewer pa-
rameters by methods of sharing parameters,etc.[8], which
has a good balance between performance and memory/com-
putational resource usage.

2.1. AlexNet

AlexNet [1] is the first work that popularized Con-
vNets in computer vision. It features convolutional lay-

1

ers stacked on top of each over. AlexNet consists of a
total of 8 layers, which are 5 convolutional layers and 3
fully-connected layers (final layer outputs the class labels).
Batch-normalization is applied after the first two convolu-
tional layers. Dropout is applied after each layer during the
last two FC layers.

2.2. GoogLeNet/Inception

The goal of the inception module is to act as a ”multi-
level feature extractor” by computing 1x1, 3x3, 5x5 convo-
lutions within he same module of the network, then stack
these outputs together along the channel dimension and be-
fore being fed into the next layer the network. This model
also dramatically reduced the number of parameters in the
network. It uses average pooling instead of fully connected
layers on top of ConvNet, enabling it to eliminate a large
amount of parameters since pooling does not introduce ex-
tra parameters [3].

2.3. VGGNet

VGGNet was introduced by Simonyan and Zisserman in
2014[7]. This network is characterized by its simplicity.
It contains 16 CONV/FC layers and features an architec-
ture that only consists of 3x3 convolutions and 2x2 pooling
from the beginning to end. Even though it performs well,
the downside of the VGGNet is that it is computational ex-
pensive to train and uses significant amount of memory and
parameters(140M).

2.4. ResNet

Residual network is developed by Kaiming He et al. [6].
It is a special case of Highway Networks. It is the first to im-
plement 152-layer neural networks(the deepest). It involves
a heavy use of batch normalization, and it also misses fully
connected layers at the end of the network. It is the state of
the art Convolutional Neural Network models and are the
default choice for using ConvNets in practice (as of May
10, 2016).

Usually when we train a deep convolution neural nets,
one common problem is vanishing gradients. However, au-
thors of ResNet believe that it is actually an optimization
problem[6]. Therefore, ResNet is proposed to have the gra-
dients flow like Highway Networks to avoid degradation
problem. The inputs of a lower layer is made available to a
node in a higher layer. It is similar in structure with that of
a LSTM but without gates.

2.5. SqueezeNet

SqueezeNet is a small CNN architecture that achieves
AlexNet-level accuracy on ImageNet with 50x fewer pa-
rameters, aiming to be deployed smaller CNN model on
mobile devices[8]. Together with model compression tech-
niques it is able to compress SqueezeNet to less than 0.5MB

(510 smaller than AlexNet), which can fully fit on embed-
ded device. Its major three strategies to downsize a model
are:

1. Replace 3x3 filters with 1x1 filters. This reduces pa-
rameters by 9X less.

2. Decrease the number of input channels to 3x3 filters

3. Down-sample late in the network so that convolution
layers have large activation maps

According to its paper[8], SqueezeNet uses a specific ar-
chitecture named ’fire module’ as the basic building block
for the model. which is composed of ’squeeze layer’ and
’expand layer’. The ’squeeze’ layer is a convolution layer
made up of only 1x1 filters, and the ’expand’ layers are con-
volution filters with a mix of 1x1 and 3x3 filters. By reduc-
ing the number of filters in the ’squeeze’ layer feeding into
the ’expand’ layer, total number of parameters are thus re-
duced.

In addition to reducing number of parameters in the
model, the authors [8] also believe that creating a larger ac-
tivation/feature map later in the network, classification ac-
curacy actually increases, as illustrated in strategy 3 above.
Having larger activation maps near the end of the network
is in stark contrast to networks like VGG where activation
maps get smaller as we get closer to the end of a network.
However it turns out to work pretty well.

SqueezeNet also has some variants that can reduce pa-
rameters by significantly more, which is what they call
’deep compression’. With ’deep compression’, the origi-
nal SqueezeNet adds bypass or complex bypass on top of it,
which simply bypasses some fire modules in the model to
decrease parameters[2].

3. Dataset and Features

This project uses dataset from Tiny ImageNet Challenge.
The original ILSVRC2016 dataset is a large set of hand-
labeled photographs consisting of 10,000,000 labeled im-
ages depicting 10,000+ object categories. These pictures
are collected from flickr and other search engines, labeled
with the presence of absence of 1000 object categories. The
Tiny ImageNet dataset consists of the same data but the im-
ages are cropped into size of 64x64 from 224x224. It has
200 classes instead of 1,000 of ImageNet challenge, and
500 training images for each of the classes. In addition to
its 100,000 training data, it has 10,000 validation images
and 10,000 test images (50 for each class). It uses one-hot
labels. Down-sampling of images causes some ambigui-
ties in the dataset since it is down-sampled from 224x224
to 64x64. The effect of this down-sampling includes loss
of details and thus creating difficulty of locating small ob-
jects. Images are normalized by subtracted its mean before

2

Layer Dimension
Input 64x64x3
CONV1-16 56x56x16
ReLU
Pool-2 28x28x16
FC1-1024 1x1x1024
ReLU
Output 1x1x200

Table 1. Baseline Model

training and testing in order to ’center’ the data. This way
the features have a similar range so that when we do back
propagation, out gradients don’t go out of control. I will
report top-1 accuracy rate, which is the fraction of test im-
ages that are correctly classified by the model, to measure
the performance. Tensorflow is used to build all models in
this project.

4. Approaches

4.1. Models

4.1.1 Baseline Model

The baseline model that I implemented is just a simple one-
layer input-CONV-ReLU-pooling-FC-ReLU-output model
that we implemented in assignment 2. I used filter size of 16
for the convolution layer. After 10 epochs of training, this
model was able to converge to training accuracy of 34.40% ,
and validation accuracy is 33.40% . This serves as a bench-
mark for the following models.

4.1.2 Reduced Capacity AlexNet

In this project, I implemented reduced capacity AlexNet ar-
chitecture since the original architecture was trained on a
different dimension. The reduced capacity AlexNet archi-
tecture is shown in Table 1 above. It is composed of 8 lay-
ers in total, which is 5 CONV layers and 3 fully-connected
layers (the third FC layer is the output layer). There are
one 7x7, two 5x5, two 3x3 kernels in total for each of the
CONV layers, resulting in slow reduction of dimensions af-
ter each ConvNet. Stride is 1 across all layers, and padding
is zero. Cyclic learning rate is used, which starts at 0.1 and
decreases over time during each epoch. This model has a
total of 15 million parameters, which is quite large and thus
slow to train. One epoch took around 1.5 2 hours to train
on a GPU, and around 10 hours on a CPU. Due to the long
training time, only 10 epochs were trained and the result is
presented in the result section below.

Layer Dimension
Input 56x56x3
CONV1-64 56x56x64
CONV1-64 56x56x64
Pool-2 28x28x64
Batch-norm 28x28x64
CONV2-128 28x28x128
Pool-2 14x14x128
Batch-norm 14x14x128
CONV3-256 14x14x256
CONV3-256 14x14x256
Pool-2 7x7x256
Flatten 1x1x(7*7*256)
FC1-1024 1x1x1024
FC2-1024 1x1x1024
Output 1x1x200

Table 2. Reduced Capacity AlexNet Architecture

4.1.3 Reduced Capacity Inception model

I also trained from scratch GoogLeNet Inception model
with reduced dimensions on the Tiny ImageNet dataset. The
model architecture is similar to that of the original, but with
output dimensions for each modules cut in half. It’s com-
posed of 1 stem network, 9 inception modules, 1 output
classifier, and 2 auxiliary classifiers. As shown in the fig-
ure below, one inception module is a ’network in network’
structure. I implemented the module with 6 convolution lay-
ers(four 1x1, one 3x3, one 5x5) and one pooling layer of
size 3x3. The layers process and extract different features of
the input, the output is then concatenated at the end before it
is passed to the next module, which each level representing
different features extracted from the module. Two auxiliary
classifiers are added after inception level 3 and level 6 to
help with gradient back propagation. This module structure
dramatically reduces the number of parameters to train by
using small filters such as 1x1 and 3x3. The entire model
has 1.1 million parameters to train, which is significantly
less parameters than AlexNet.

Figure 1. Inception Module Structure Used in GoogLeNet

3

Figure 2. GoogLeNet Architecture

4.1.4 ResNet-20

ResNet is only composed of small sized-filters of 1x1 and
3x3, except the input convolution layer of 7x7. Every single
layer is followed by batch normalization and ReLU activa-
tion. Figure 3 shows that the basic building block of the
ResNet architectures is designed to learn residual functions
F (x) where the residual function is related to the standard
function learned H(x) by

H(x) = F (x) + x. (1)

The authors[6] believed that the ideal H(x) learned by any
model is closer to the identity function x than random and
as such, instead of having a network learn H(x) from ran-
domly initialized weights, we save training time by instead
learning F (x), the residual[13]. Additionally by introduc-
ing these identity functions x, we allow easier training by
allowing the gradients to pass unaltered through these skip
connections to alleviate traditional problems such as van-
ishing gradients. The ResNet architecture that I trained is
composed on 20 layers, it is shown in Figure 4 and differs
from the original ResNet architectures by having less repli-
cas and less spatial pooling(2x, 2x, 2x), which occurs dur-
ing the first conv-batch-relu for every basic block filter size
change(three poolings in total). For ResNet-20, I trained
the models using momentum based SGD with momentum
of 0.9 starting with a cyclic learning rate of 0.1, batch size
of 256, weight decay of 0.0001, and 10 epochs. Result is
presented in the table below.

4.2. Regularizers

4.2.1 Data Augmentation

Data augmentation was implemented for all models while
training. 10 extra crops of images are fed into the model.
They consist of two upper corner crops, one center crop,
two lower corner crops. These crops are then flipped hor-
izontally, and assigned with the same training label[11].
Data augmentation serves as random noise during the train-
ing process and help train more accurate model. This is
during training time only.

Figure 3. Residual connection vs. standard connection. We see
that for residual connections, we are learning a residual mapping
F (x) instead of H(x).

Figure 4. Structure of Reduced-Layer ResNet-20. This architec-
ture involves less replicas of the buildings blocks and less spatial
poolings. Spatial pooling is not shown in the diagram. This pool-
ing occurs during the first conv-batch-relu for every basic block
(three in total).

4.2.2 Cyclical Learning Rate

Learning rate was the hardest hyper-parameter to tune, and
every model is highly sensitive to poorly fine-tuned learn-
ing rate. Instead, a cyclical learning rate solves this prob-
lem by cyclically changing the learning rate within a rea-

4

sonable bound [4]. I used cyclical learning rate for all
model training as well, as was implemented in the origi-
nal GoogLeNet, AlexNet and ResNet[11]. The calculation
of cyclical learning rates is presented in the equations be-
low, where FLAGS.learning rate is the input learning rate
by the user as the start learning rate at the beginning of each
epoch.

I calculate the cyclic learning rate using the equations
below:

num cyc l e s = 5
b a t c h s i z e = 256
d a t a s i z e = 100 ,000
num epochs = 10
n u m i t e r = num epochs ⇤ d a t a s i z e

/ b a t c h s i z e
i t e r s i z e = n u m i t e r / num cyc l e s
c y c l i c l r = FLAGS . l e a r n i n g r a t e / 2
⇤ (cos (p i ⇤ ((c u r r s t e p � 1) % (i t e r s i z e)

/ (i t e r s i z e))) + 1)

Therefore, at the beginning of the epoch, curr step is 1,
the cosine term evaluates to 1, and the learning rate is just
input learning rate. When current step is close to half of one
iteration size, the cosine term is equivalent to cos(pi/2),
which is 0, so the learning rate is input learning rate divided
by 2. Lastly, when current step is close to one iteration size,
the cosine term evaluates to close to -1 and the learning rate
is close to 0. Therefore, the cyclic learning rate fluctuates
between the higher bound learning rate, which is equivalent
to the input learning rate, and the lower bound, which is
close to 0, and it decreases during one epoch from initial
learning rate . This is also shown in Figure 5 below.

Figure 5. Cyclical learning rate from the first 5 epochs of AlexNet
training. Tensorboard somehow only recorded the first five epochs
in its events. However, the fluctuation is clear in its cyclical pat-
tern from 0.1 to 0.01. The horizontal axis represent the number of
iterations and the vertical axis is the learning rate. The number of
iterations per epoch is around 390 (100,000 256).

Model Training (%) Top-1 Validation(%)
Baseline Model 34.40 33.04

Reduced AlexNet 46.20 43.65
GoogLetNet 53.43 49.40
ResNet-20 58.40 55.40

Table 3. The training and the top-1 validation accuracies of all
models. ResNet-20 performed the best among all, with validation
accuracy slightly better than 55% .

4.2.3 Floating Point Precision

In order to save space and increase speed, I started off used
floating point precision of 32 bits instead of 64 bits, as how
we implemented models in class. However, as pointed out
by Gupta, et al [14] in their paper, that it is possible to
train these networks using only 16-bit fixed-point numbers.
Therefore I implemented the models with 16 bits. I see very
little changes in terms of the speed or the accuracies change,
however.

5. Results and Analysis

5.1. Results

The training accuracies and the top-1 validation accura-
cies are presented in the Table 3.

Looking at Table 3, we see that ResNet-20 performed
the best during training. The fact that ResNet-20 is able to
outperform all of the other models even with reduced archi-
tectures than the original are understandable, because it suc-
cessfully eliminates the possibility of vanishing / exploding
gradients and makes the optimization process easier. There-
fore ResNet was significantly easier to train, and converged
relatively faster than the other models. This model is later
used on the test set as my best-performing model. I started
off building and training AlexNet model, while its architec-
ture is straightforward and was thus easy to build, It was the
hardest model to train for me. First of all, It took the longest
time to train due to its huge amount of parameters (15 mil-
lion). Secondly, it could easily lead to overfitting or random
noise. With parameters of this scale, even if initializations
are not at the optimal value, the model was still able to train
and have some accuracies due to noise or overfitting. At the
start of training, I set the learning rate to be 1E-7, and 1E-5,
which were later found to be too small for optimal perfor-
mance. However, the training and the validation accuracies
for AlexNet was still close to 10% after second epoch of
training. I could only evaluate its initialization-based per-
formance after epoch 3, when it would stay under 10% or
decrease, which is 6 hours after. Whereas for GoogLeNet,
due to its small size, it is highly sensitive to parameter ini-
tializations, the training accuracies would be only 2% for
incorrectly initialized hyper-parameters. Therefore, though

5

easy to build, AlexNet is a relatively more difficult model
to train due to its large amount of parameters that some-
how makes it robust for poorly fine-tuned parameters at
the beginning of the training, and making fine-tuning pro-
cess long before locating the best performing parameters.
My favorite model during training though, is GoogLeNet
Inception, even though its structure was relatively compli-
cated to implement, it was easy to debug by matching di-
mension of layers from one inception module to the next.
Firstly, GoogLeNet is fast to train. It took nearly 4x less
time to train than AlexNet and 3x less than ResNet-20. Its
frequent use of small filters and ’network in network’ struc-
ture also makes great intuitive sense during implementation.
GoogLeNet had similar performance with ResNet up until
the last three epochs, where it plateaued at slightly below
50%Ḋuring the entire process, training models that are built
from scratch was long for all of the models (I only used one
GPU on Google Cloud), yet the results turned out to be far
from the state-of-art result that the original models gener-
ated on the Large Scale dataset, showing the limit of mod-
els built from scratch. Also, most of the models seemed
to plateau at validation accuracy of around 50% for some
reason, which caused great difficulty in improving classi-
fication accuracy. Fine-tuning the initializations had great
effect on the model performance as well. Due to the time
constraint, I stopped the training as soon as I started to no-
tice non-convergence of the validation accuracy within 2
epochs.

I have also plotted the validation accuracies of all mod-
els over 10 epochs in Figure 6 below. According to the
graph, models seem to converge at around 50% accuracies.
AlexNet has a relatively steady increase in its validation ac-
curacies over the training, my intuition of this is that due
to its large amount of parameters, the result tends to have
lower standard deviation and therefore tends to fluctuate
less. It is shown in the graph as a smooth curve, how-
ever it plateaued at only 43.65% at the end of 10 epochs.
ResNet-20 showed relatively large fluctuations early on dur-
ing epoch 2 to epoch 4, where its average batch loss fluc-
tuated quickly (not shown in graph) and its accuracy after
third epoch almost stayed flat, which is rare, since accura-
cies usually increase rapidly during early epochs of train-
ing. However, it pulled back soon after the third epoch
and increased rapidly after. It seems from the graph that
ResNet-20 has not plateaued yet, due to its large jump in
the last epoch. Yet it was already clear that ResNet out-
performed the other models by a slight margin. GoogLeNet
converged as one of the fastest models up to epoch 7, after
which its validation accuracies decreased during epoch 8
and plateaued for epoch 9 and 10. Baseline model stayed in
the 30% range starting epoch 7, and serves as a benchmark
to the other models.

Figure 6. Top-1 Validation Accuracies of all models over 10
epochs. Due to the limit computing power, only 10 epochs of each
model were run. This figure shows that all models seem to con-
verge (plateau) at epoch 10, with ResNet-20 reaching the highest
accuracy of 55.40% . All models perform better than the baseline
model of 33.04 % , which is expected.

Model Num of Parameters Training Time
AlexNet 15 million 19 hrs
GoogLeNet 1.1 million 5 hrs
ResNet-20 11 million 14 hrs

Table 4. Number of parameters, and the time it took to train each
model for 10 epochs on 1 GPU. AlexNet took the most time to
train due to its large sizes, and GoogLetNet only took 5 hours to
train due to its frequent use of small filters.

5.2. Number of Parameters

Number of parameters is definitely one of the most im-
portant factors to consider during training. Depth of layers,
ConvNet structures, strides and paddings all contribute to
different number of parameters, and the amount of param-
eters has great influence on gradient flow, overfitting level,
computing time, and space needed. In Table 4 below, I have
calculated the total number of parameters needed for each
model and their corresponding total training time for one
model.

5.3. Train Loss

One interesting pattern to observe is the effect of cycli-
cal learning rate on training loss. Due to the cyclical nature
of learning rate, the train loss decreases in a cyclical pat-
tern as well, which eventually led it to converge after 8,9
epochs. According to Figure 7 attached below, the train-
ing loss, which is calculated as average classification loss
over one batch, decreased from 5.50 at the start to 2.50 af-
ter 3.500k iterations. The light-colored pattern is the noise

6

on train loss. I believe the sudden increase of train loss at
the beginning of the second epoch in the light-colored loss
indicates an exploding gradient that was clipped right away.
I set the gradient clipping to occur when the the norm is
greater than 10.

Figure 7. Train loss from the first 5 epochs of AlexNet train-
ing with noise(light color). Again Tensorboard somehow only
recorded the first five epochs in its events. However, the fluctua-
tion is clear in its cyclically decreasing pattern for each epoch. The
horizontal axis represent the number of iterations and the vertical
axis is the train loss. The number of iterations per epoch is around
390 (100,000 256). At the beginning of each epoch, train loss
increases due to increase in cyclical learning rate, and decreases
over the epoch

6. Conclusion and Future Work

In this project, I implemented and trained from scratch
three state-of-art model structures, AlexNet, GoogLeNet,
and ResNet-20, on the TinyImageNet dataset. After fine-
tuning and evaluating the performance on all three models,
I used my best performing model, which is ResNet-20 on
the test set, and achieved test accuracy of 45% (error rate
of 55%). During this process, I found out that the models
tended to plateau at around or below 50% validation accu-
racy. It turns out that training state-of-art model structures
with slight variations from scratch on reduced dimension
of image datasets do not have as good performances as the
original models on the Large Scale ImageNet Challenge.
My intuitions of this phenomenon is the following.

First, downsizing of the image datasets could lead to am-
biguity problems in image details and might affect model
accuracy. If we take a picture at the actual downsized sam-
ples, it is very hard not to make mistakes even with hu-
man eyes. Also, according to a fellow Stanford student
Jason Ting[16], the original pictures from the ImageNet
data set are 482x418 pixel with an average object scale of
17.0%Ṡince the Tiny ImageNet data set pictures are 64x64
pixels, which means 13.3% pixels are removed from the
original images to make the pictures a square, and then these
pictures are shrunk by a factor of 6.5. This transforma-

tion alongside with how the labels are associated with the
images leads to potential problems for training the model,
where some example images can be seen in Figure 8[16].

Figure 8. Examples of images in the data set that are difficult to
classify even with human eyes. In (a) and (e), the objects are very
blurry. You can barely see the sunglasses in (f) and (h). The la-
bels in (c) and (g) look more of background rather than the main
objects. Same problem with bow tie in (b) and banana in (d)

Secondly, limited number of computing power and time
also limited how far I could go with each model training.
During my training process, I was only able to implement
10 epochs for each model before it plateaued. The original
models, however, each takes at least two to three weeks to
train, and were trained with 90 epochs with AlexNet, base-
line ResNet for 500 epochs, and 250 epochs on GoogLeNet.

For the future work, trying to eliminate unnecessary
parameters in the models using techniques described in
SqueezeNet[8] is definitely what I would consider doing
before training. Improving on the hardware (more GPUs)
to allow more epochs of training is also considerable for
model improvements. If possible, I would look closely into
the Tiny ImageNet Dataset to see which images have lost
details and may cause ambiguity in training process, and
therefore is not worth including in the samples. I will also
look into my best model, ResNet-20, to see if residual con-
nections significantly improve fine-tuning and training effi-
ciency in general.

7. Reference

References

[1] Alex Krizhevsky and Sutskever, Ilya and
Hinton, Geoffrey E. ImageNet Classification
with Deep Convolutional Neural Networks.
http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-
networks.pdf

[2] http://www.kdnuggets.com/2016/09/deep-learning-
reading-group-squeezenet.html

7

[3] http://www.pyimagesearch.com/2017/03/20/imagenet-
vggnet-resnet-inception-xception-keras/

[4] Leslie N. Smith Cyclical Learning Rates for Training
Neural Networks.

[5] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, Andrew Rabinovich Going
Deeper with Convolutions.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition

[7] Karen Simonyan, Andrew Zisserman VERY DEEP
CONVOLUTIONAL NETWORKS FOR LARGE-
SCALE IMAGE RECOGNITION

[8] Forrest N. Iandola, Song Han, Matthew W.
Moskewicz, Khalid Ashraf, William J. Dally,
Kurt Keutzer SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and ¡ 0.5MB model size

[9] Gao Huang, Zhuang Liu, Kilian Q. Weinberger, Lau-
rens van der Maaten Densely Connected Convolu-
tional Networks

[10] Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg and Li Fei-Fei.(* = equal contribu-
tion) ImageNet Large Scale Visual Recognition

[11] Tyler Romero https://github.com/fcipollone/TinyImageNet

[12] CS231N Convolutional Neural Net-
work, Stanford University, spring 2017
http://cs231n.github.io/convolutional-networks/

[13] Andrew Zhai Going Deeper on the Tiny Imagenet
Challenge

[14] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrish-
nan Deep Learning with Limited Numerical Precision

[15] Jason Ting Using Convolutional Neural Network for
the Tiny ImageNet Challenge

[16] Hansohl Kim Residual Networks for Tiny ImageNet

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Spatial Pyramid Pooling in Deep Convolutional Net-
works for Visual Recognition

[18] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoff-
man, Ning Zhang, Eric Tzeng, Trevor Darrell DeCAF:
A Deep Convolutional Activation Feature for Generic
Visual Recognition

8

