
A Dense Take on Inception for Tiny ImageNet

William Kovacs
Stanford University

kovacswc@stanford.edu

Abstract

Image classificiation is one of the fundamental aspects
of computer vision that has seen great advancements due
to the rise of deep learning. While this problem has been
essentially solved within the past few years via the use of
large networks, it still provides a good baseline for testing
out new architectures. Here, we try to combine ideas from
prior successes in order to leverage their strengths: the
wideness that Inception modules provide with the feature
reuse of DenseNets. To this end, we developed two dense-
inception model that performs comparably with the incep-
tion one that it was based on. The models were tested on
Tiny ImageNet, with test errors of 0.612, 0.664, and 0.623
for the Inception ResNet and two DenseNets, respectively.
While the change in architectures does not provide much
difference between the results, the overall filter distribution
was changed significantly, suggesting further work would
need to be done to boost the underlying model, but shows
hope for their synergy.

1. Introduction
Over the past several years, deep learning has become

the go-to method for most computer vision tasks due to its
great efficacy. The most basic of these tasks is image clas-
sification, wherein a model is generated that is able to cor-
rectly identify the subject of various images. One of the
most promiment competitions in this task is the ImageNet
Large Scale Visual Recognition Challenge [16]. Here, small
images from a very wide selection of objects, from boats to
lamps to cows, are divided into labeled training and vali-
dation sets, and the goal is to develop a model capabale of
learning from the data that can accurately label new images.

For this task, Krizhevsky et al. [11] popularized deep
convolutional neural networks (CNNs) as the standard tool
in this task. His initial model outperformed the other meth-
ods during the 2012 ImageNet competition and since then,
deep learning has been the focus of computer vision. Dur-
ing the following years, new models have introduced novel
improvements to the original CNN modek, such as residual

connections or novel modules, that significantly improve re-
sults.

Indeed, image classification on ImageNet has become
roughly as good as humans when using current state-of-the-
art models [10]. Such a rapid increase in performance has
been due to the focus on this model paradigm, with efforts
to increase their depth, as well as the improvements in com-
putation power that has enabled these methods to be trained
in a practical amount of time compared to previous decades.

1.1. Related Work

In the following years since the initial breakthrough,
there was great focus on creating deeper neural networks
capable of leraning more complex functions. This paradigm
can be easily seen in the corresponding 2014 challenge,
where small, 3x3 convolutional filters were stacked to cre-
ate a deep, 19 layer network to generate a competive net-
work [19].

In the following year, an even deeper network, known as
ResNet and consisting of 152 layers, was developed [6]. In-
creasing the depth of a network also increases the difficulty
of training. To counteract this effect, ResNet learns residual
functions based on that layer’s input as opposed to learning
an entirely new new functions.

There are a multitude of other network architectures that
utilize a similar idea to ResNet of trying to include short
paths from earlier layers to deeper ones. This can read-
ily be seen in Highway networks [21], which uses a gat-
ing mechanism, similar to the Long Short Term Memory
idea used in recurrent neural networks [7]. FractalNets also
utilize a similar pattern, albeit the connections here consist
of parallel paths where a single layer has two correspond-
ing layers in an adjacent path as opposed to direct connec-
tions [12]. The inclusion of shortcuts can also be seen in
Directed Acyclic Graph CNNs, which provide connections
between every layer to the output layer [25]. The represen-
tation of hypercolumns as a CNN also follows this similar
pattern, as the output of a few layers at varying depths all
contribute to the final layer [5].

Similar to the above methods is the DenseNet; however,
the new connections in this network are designed to pro-

1



mote feature reuse thereby enabling the creation of shorter,
more efficient networks, as opposed to very deep ones [8].

There have also been focus on trying to increase the
width of a network, instead of just increasing the depth.
For instance, it has been shown that a wide ResNet vari-
ant can prove to be just as effective as a deep ResNet [26].
Indeed, in the 2014 ImageNet challenge, GoogLeNet intro-
duced inception modules which increased the width of the
network by performing mulitple, parallel convolutions on
the same input before concatenating their results and using
that as the input to the following layer [23]. By stacking
such models, they were able to generate both a wide and
deep network. Interestingly, an adaptation of these mod-
ules was introduced in [14] wherein the collaborative con-
catenation stage was replaced by a competitive maxout ac-
tivation. Another interesting adaptation to this method is
to include the aforementioned residual connections within
the inception modules [22]. While an inspiring model, the
addition of these residual paths led to similar results when
compared against a similar, pure-Inception based network,
though the performance was already so good on the image
classification problem that their difference may not be visi-
bile in this problem.

Another interesting architectural design that doesn’t
quite fit with the above categories is the Network In Net-
work design that essentially replaces the standard, linear
convolutional layers with convolution layers that utilize
multilayer perceptrons [15].

Aside from architectural designs, recent work has also
been focused on finding alternative ways to optimize the
training of these networks. For instance, in ShiftCNN, the
network is designed to utilize the less expensive shift and
add operations over multiplications to increase the speed of
training with little loss of accuracy [4]. Another method
used to increase the speed of training is through the use of
very large batch sizes, made possible by the use of a linear
scaling rule to adjust the learning rate, correspondingly [3].

Other variants to the training method include the utiliza-
tion of higher order features, instead of solely first-order
ones [13]. A quite successful approach to altering the train-
ing method is to use stochastic depth, that is during train-
ing, a subset of layers are dropped to effectively only train
small networks, and during testing, the full deep network is
used [9].

2. Dataset
Instead of training on the full-sized ImageNet, our mod-

els will be trained on a subset of this collection known as the
Tiny ImageNet. Images included in this dataset are 64x64
pixels. These patches represent a wide variety of object
classes, and are labelled in a hierarchical fashion via the
WordNet hierarchy. These classes can range from ”tailed
frog” to ”oranges” to ”poles,” as can be seen in Figure 1.

Figure 1. Example images from the Tiny ImageNet demosntrating
the wide variety of classes that are contained. Furthermore, the
pole example demonstrates an issue common with some classes:
the presence of foreign entities that can intefere with classification.

This figure also highlights the complexity that some seem-
ingly simple classes can exhibit: the image for a ”pole” has
a person as the center of the image that may confuse the
network.

In the Tiny ImageNet data set, there are 100,000 training
images, 10,000 validation images, and 10,000 test images.
These images are split evenly into 200 classes. Prior year’s
results ranged from an error rate of 0.616 to 0.268.

To prepare our data for processing, they underwent some
standard procedures. The first is to generate a ’mean’ image
whose pixel values correspond to the average of all the cor-
responding pixel values in the images. This ’mean’ image is
then subtracted from each image, similar to the preparation
of the VGG-Net dataset. Then, to further augment the data,
horizontally-flipped copies of the image were included as
part of training.

3. Methods
Our model focuses on combining the core ideas of the

inception models with those of the DenseNet. Specifically,
the inception models utilize parallel paths with varying re-
ceptive field size in order to increase the width of the net-
work. Meanwhile, the DenseNet uses concatenation of
layer outputs to an overarching input for a block in order
to promote feature reuse.

The combined model will be compared against two other
models: a simple CNN model and a small Inception ResNet
model. The simpleCNN model is used as a contrast to what
a basic model composed only of convoutional layers can
achieve, even if it was able to perform well on a previoous

2



challenge, as well as demonstrating that the wide architec-
ture of the other networks are important to their success.
Meanwhile, the Inception ResNet model provides a good
comparison to determine the effects of the dense connec-
tions.

All of the following models were constructed using Ten-
sorflow (TF) Layers [1].

3.1. Simple CNN

Our initial baseline model was based on a model that
was initially constructed for high accuracy on the CIFAR-
10 dataset in assignment 2. It consists of 5 pairs of con-
volutional layers followed by maxpooling, and ending with
2 fully connected layers and a softmax classifier. The first
two pairs had a filter size of 5x5 before shrinking to pairs of
3x3 filters, while the number of filters doubled after two
of each pair, starting from 128, to 256 at the third pair,
and ending with 512 at the final pair. The purpose of this
baseline model is to serve as a skeleton constructed of the
components of the more complex models to demonstrate
the utility of the new connections, and to show that the non-
inception convolutional layers are not the ones that domi-
nate the power of the model, and so would be able to ac-
count for the similarity between the two different types of
connections.

3.1.1 Regularization

There were two main regularization techniques employed,
that will also be used in the following two models: adding
an L2 regularization penalty and utilizing dropout.

The L2 regularization is simply the addition of the L2
norm of the weights to the loss function, weighted by
the hyperparameter λ. That is, R(W ) = λ

∑
k

∑
lW

2
k,l.

This penalty encourages smaller, diffuse weights, especially
compared against using the L1 norm. In the simpleCNN
model, λ was set to 0.0001, which was determined empiri-
cally.

Srivastava et al. first demonstrated the power of dropout
as a form of regularization [20]. Essentially, during each
iteration of training, a random subset of neurons are se-
lected to be ’dropped’, and those neurons are not updated,
while the remaining ones are. It’s efficacy is thought to be
due to the prevention of the neurons from co-adapting, that
is subsets of neurons could update their features together.
By preventing these neurons from co-adapting, dropout en-
courages more generalized classification. During testing,
no dropout occurs. There is a single hyperparameter, p,
that represents the probability that a given neuron will be
dropped. In this model, p was set to 0.3, which was deter-
mined empirically between 0.3 and 0.5.

3.2. Small Inception Resnet

In the past year, the authors behind the Inception ResNet
have released the code as part of the model zoo in the Ten-
sorflow Slim library [17]. While the code itself was not used
and all further models were constructed separately using TF
Layers, it was used as a guide in order to get a good number
of filters for the various convolutional layers in the model,
which would have otherwise taken too long to determine if
done from scratch. Furthermore, while the authors do pro-
vide a pre-trained version of the full Inception ResNet, it
was deemed as an unfit model for comparison due to its dis-
tinct advantages over any model trained from scratch. That
is, there is an inherent advantage that it provides with the
size of the network (40 repetitions of inception modules
that was trained over 20 GPUs), which is simply an infeasi-
ble size for us to train given the current hardware we could
use. Furthermore, after a single epoch of fine tuning, the
validation accuracy of the pre-trained model was already
0.531. Because the model was already trained on ImageNet
beforehand, the intermediate weights are already good rep-
resentations for the current subset of that collection, and all
it has to do is essentially relearn the mappings that it would
have had when used in the original ImageNet. While our
model consists of similar building blocks as the full Incep-
tion ResNet, the differences are too great to get a useful
comparison.

Instead of using such a large model, we constructed a
customized small Inception ResNet with a vastly decreased
number of layers to both make training from scratch feasi-
ble, as well as to provide a more apt comparison to the dense
version of this model. Before describing the full model,
an overview of the inception modules that are prominiently
used is described in the following section.

3.2.1 Inception Modules

The core of the Inception ResNet are embodied in the spe-
cial blocks introduced in [23], known as inception modules.
As can be seen in figure 2, each block consists of paral-
lel routes of varying receptive field size: 1x1, a 3x3, and a
5x5, as well as an average pooling layer. This parallelism
increases the overall width of the network and has been
proven to be an efficient alternative to the straight pathways
of prior models [23]. As can further be seen in the figure,
the 5x5 field size path is actually split into two 3x3 convo-
lutions to be more efficient, as this style effectively covers
the same region as a single 5x5 convolution, while requir-
ing fewer parameters. Furthermore, to reduce the overall
number of parameters, three of the paths utilize 1x1 convo-
lutions that reduce the feature depth.

The ResNet version of these modules also feature a
residual connection from the input of each module to the
output concatenation, which can be seen as the orange line

3



Figure 2. The inception module paradigm used in the networks.
The orange line corresponds to the major change between the
ResNet and the DenseNet version of the architectures: either ad-
dition or concatenation, respectively.

in figure 2 and using the sum operation. The utility of such
connections has been discussed in Section 1.1. In [22], it’s
shown that the the addition of these residual connections of-
fers similar results when compared to a network composed
of modules without such connections. We chose to compare
the dense version with the residual version because while
both types (the vanilla and residual) show comparable per-
formance, the residual method provides a cleaner transition
between the two types of network with a simple change,
which will be described in the DenseNet section.

3.2.2 Inception ResNet Architecture

The full architecture can be seen in figure 3, and is inspired
by [22], but is scaled down in order to better match the
smaller data, as well as to make training multiple models
feasible with the given time and hardware. As can be seen,
the model begins with several 3x3 convolutional layers with
an increasing number of filters (32, 80, 192, 320), followed
by a 2x2 max pooling with a stride of 2. This is followed by
a triplet of inception modules, followed by a max pooling,
another triplet, more max pooling, and ending with a fully
connected layer and a softmax classifier. The number of fil-
ters for the convolutional layers within the modules in the
first triplet were either 32, 48, 64, or 96, except for the last
1x1 convolutional layer, whose number of filters equaled
those of the input tensor. In the second triplet, all filters,
barring the last one, were either 80 or 96. The maxpooling
after each triplet of inception modules actually consists of a
similar inception-style block, where each of the three con-
volutional paths have a corresponding reduction: the 1x1
has its max pooling, the 3x3 and 5x5 paths use a convolu-

tional layer with stride 2 in their final convolutional layer.
For simplicity, this block is referred to as maxpooling.

This model uses the same regularization techniques as
those described in section 3.1.1. For L2 regularization, λ
was set to 0.0001, and for dropout, p was set to 0.3. Here,
dropout was only performed on the final, fully connected
layer. These methods of regularization were emprically de-
termined. Indeed, without these techniques, there was a gap
of 48% between training and validation accuracy (0.893 vs
0.411, respectively), but with them, it was reduced to only
1.4% (0.418 vs 0.404, respectively).

3.3. Inception DenseNet

This model attempts to implement dense blocks as de-
scribed in [8], with the use of inception modules instead of
single convolution layers. For each dense block, there is an
overarching input representation that will be extended after
each inception module. For example, the input starts at size
n. This is fed through the first inception module, and its
output is also size n and is concatenated to the end of the
original input, which now has size 2n. This process is then
continued for however many modules are inside the dense
block. In this model, each dense block consists of a triplet
of inception modules, so the initial input is re-used twice,
the second once, and the third simply undergoes maxpool-
ing.

The inception modules used in the ResNet variant un-
dergo a simple change to become part of a dense block: the
residual connection is changed from a summation to a con-
catentation. This change is highlighted in figure 2 at the
connection highlighted by the orange line.

The overall architecture remains the same as described
in Section 3.2.2 and seen in figure 3. However, the number
of filters for the convolutional layer just prior to the incep-
tion modules is reduced by 1/4, from 320 to 80. Further-
more, each of the layers within the inception modules and
their respective max pooling is reduced by 1/4 as well, to
demonstrate how the dense network can be used to achieve
similar results with less filters. This means that the number
of filters within these modules were now either 12, 16, or
24 in the first triplet (the convolutional layer used after the
average pooling was only decreased by 1/2 from 32 to 16),
and 20 or 24 in the second triplet. This network is known as
DenseNet-A.

While the original intention was that each input would
only grow by some constant addition, due to the implemen-
tation with the final 1x1 convolution being based on the in-
put size to the layer and not the block, the input size actually
doubled for each module in a dense block in one of the mod-
els. Fortunately, due to the reduction of filters by a quarter,
the input into the third and final module for each block was
actually the same size as in the residual network, meaning
that there was a similar number of parameters between the

4



Figure 3. A schematic of the Inception networks that are used. Each triplet of inception modules are connected in a dense fashion in the
dense network.

two models. The input propagation did not continue be-
tween dense blocks because the input size was reset during
the max pooling. The increase in block size does provide an
interesting comparison to the intended denseNet, and so we
include the results as DenseNet-B.

4. Experiments
4.1. Training

Our models’ weights were first initialized with Xavier
initialization [2], which is aimed towards maintaining the
scale of the gradients similar between different levels of
the network by scaling the initializations according to the
number of input neurons. The networks were trained us-
ing stochastic gradient descent (SGD). An adaptive learning
rate method, RMS prop [24], with a decay value of 0.9, and
momentum with a value of 0.9, was used for this method.
Furthermore, the learning rate decayed by a factor of 0.1
if the loss would stagnate between multiple epochs. The
learning rate was initially set to 0.0001, determined empir-
ically between each magnitude of difference from 0.01 to
0.000001. A variety of batch sizes were tested (64, 128,
256), with 128 being selected as the final one, as it al-
lowed to look at the largest amount of data per iteration,
while retaining no performance issues, and prevented the
model from running out of memory that the larger batch
size could cause. The models were run for 20 epochs (about
4-5 hours), by the end of which they appeared to have con-
verged.

In addition to the previously described models, a ver-
sion of the Inception ResNet model was trained that used
the same number of filters as the DenseNet models in order
to further demonstrate the importance of the dense connec-
tions.

4.2. Testing

To evaluate our models, we compared the validation er-
ror and top-5 error, as well as testing error. Here, error is
defined as the percentage of images that were misclassified
using the model. Top-5 error refers to the percentage of im-
ages that did not have its label included as the model’s top-5
possibilities for the given image. Only validation top-5 er-
ror could be recorded because the error of the testing data
was performed on a server that we did not have access to
and would only provide the error metric.

4.3. Visualizations

In order to better understand the differences and simi-
larities between the models, saliency maps were generated
according to [18]. Essentailly, a saliency map reflects the
importance of a given pixel on the final classification score,
and is calculated as the gradient of the correct class’s score
with respect to the pixel value. The code for these visual-
izations was adapted from assignment 3. In order to gain
understanding into these models, the saliency maps corre-
sponding to the best and worst classes are shown.

5. Results and Discussion

5.1. Classification Errors

The classification error of the different models can be
seen in Table 1. As to be expected, the generation of a small,
simple CNN performs rather poorly. However, it serves its
purpose in that it provides a contrast to the inception model
of similar depth, and to show that it is not just the straight,
convolutional layers that provide the power behind these
models.

It’s interesting to compare the results of the various types

5



Table 1. Error metrics for the various models tested. Both of the in-
ception models performed better than a simpleCNN model, while
the dense network appears to yield similar results despite having
fewer parameters.

of the constructed Inception networks. DenseNet-A, with
its filter reduction, had only a difference of 0.05 accuracy
compared to the ResNet version, and only a difference of
0.04 from the DenseNet version with its greater block sizes.
The fact that both DenseNet versions are capable of achiev-
ing results similar to the residual network suggest that the
dense connections are able to significantly contribute to the
overall model. However, the difference between DenseNet-
A and DenseNet-B suggest that there is a yet to be discov-
ered optimal block size that can be used to more efficiently
balance the number of parameters with the validation accu-
racy.

To further test the importance of the dense connections,
a model using the Inception ResNet modules was trained,
with the exception that the number of filters within the mod-
ules coincide with those used in the DenseNet model. After
training such a model, the validation error was only slightly
above that of the simpleCNN model: 0.742. This similarity
suggests that the inception modules in the ResNet version,
when not supplied with enough filters, contribute very lit-
tle to the overall classification. This further suggests that
the dense connections in the DenseNet models contribute
significantly to their results.

Rather than just focusing on the accuracy of the mod-
els across all classes, it’s helpful to examine the types of
classes that were easier or harder to classify. For instance,
across all of the Inception models, two of the highest ac-
curacte classes were the lifeboat and goldifsh classes (with
above 80% accuracy across all models). Meanwhile, two
of the least accurate classes were the rocking chair and the
lampshade classes, with less than 10% accuracy across all
classes. Example images from these classes can be seen in
Figure 4. Looking at the images themselves, there is a fairly
intuitive explanation for why the models behave they do.
Lifeboats and goldfish have finer details that the model can
use to identify members of their class. Conversely, rocking
chairs and lampshades consist of very basic shapes that may
be difficult to distingsuish from other classes.

Figure 4. The image classes with the highest and lowest accuracies
are presented, and their saliency maps are compared among the
different models that were tested.

5.2. Saliency Maps

More intuition into why the models behave as they do
can be garnered by looking at the generated saliency maps,
which appear in Figure 4 as well. The first thing that be-
comes apparent is that the saliency maps for the simple
CNN model tend to be considerably fuzzier, which corre-
ponds well with the results that we have seen. However,
the saliency map for the lifeboat has a lot of focus on the
lifeboat itself, suggesting that objects in this class are very
distinct, and easy to identify, given that this simple model
was able to easily identify it. The other classes are too fuzzy
for this model to make any other reasonable conclusions.

The sharp focus on the lifeboat remains with the Incep-
tion models, further confirming its lack of difficulty. The
DenseNet variants, while still generally focused, is fuzzier
for this particular class, suggesting that it may consider the
environment as well. The goldfish presents an interesting
saliency map. For the ResNet variant, while there is a gen-
eral fuzziness, there are distinct bright spots in the middle
that correspond to the fish itself, particularly the eye, as well
as the contours of the body. This correspondence can be
more readily seen in Figure 5. For the DenseNets, there are
bright spots corresponding to the goldfish as well, but there
also appears to be higher intensity surrounding the fish as
well, once again suggesting that the environment plays a
larger role in the dense net variants.

The less accurate classes provide two different types of
interesting saliency maps. For the rocking chair, there is
a heavy emphasis on the seat of the chair, which appears
to have very little distinguishing features. This could ex-
plain the poor performance for this class: rather than being
able to develop features for the more unique aspects of a
chair, such as the rails on the back, the model learned to

6



Figure 5. A close-up, grayscale image of a goldfish image over-
layed over its corresponding saliency map for the Inception
ResNet to highlight the high values along the head of the fish.

identify this sort of rectangle, which can belong to a variety
of classes. Meanwhile, the lampshade example provides an-
other paradigm for a saliency map on a misclassified image:
there is simply a lack of learned features, and so a fuzzy
blob appears. This is similar to the results of the simple
CNN model for the other classes as well.

6. Conclusions
Using the Inception ResNet as a guideline, we were able

to construct a model that performs okay on the Tiny Ima-
geNet challenge. More interestingly, we were able to adapt
this method to use dense connections that allowed for the re-
duction of filters within the inception modules while achiev-
ing similar results. This method relies on the conacatenation
of filters to an overarching input representation per dense
block, and we demonstrated that adjusting the size of these
additions via the final 1x1 convolution can improve perfor-
mance, even if the other filter numbers were reduced. It
would be interesting to perform a wider variety of DenseNet
architecture tuning to determine an optimal ratio of these
filter numbers, which would require much more time than
currently given.

Furthermore, the focus of this project drifted towards
generating a dense version of an inception network that can
achieve similar performance with fewer filters, so it would
be interesting to focus on enhancing the original, ResNet
model to include an extra block of inception modules, as
well as increasing the overall number of modules within
each block. Efficiently training such a network would re-
quire greater computing power, so configuring the network
to run on distributed GPUs would be very helpful to reduce
training time. If such a larger and more accurate network

could be developed, applying the same conversions as per-
formed here would be able to demonstrate its scalability.
Overall, this project demonstrates the feasibility of extend-
ing the dense architecture to use inception modules, while
still accruing average results for the Tiny ImageNet chal-
lenge.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[2] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In In Proceed-
ings of the International Conference on Artificial Intelligence
and Statistics (AISTATS10). Society for Artificial Intelligence
and Statistics, 2010.

[3] P. Goyal, P. Dollr, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate,
large minibatch sgd: Training imagenet in 1 hour. CoRR,
abs/1706.02677, 2017.

[4] D. A. Gudovskiy and L. Rigazio. Shiftcnn: Generalized low-
precision architecture for inference of convolutional neural
networks. CoRR, abs/1706.02393v1, 2017.

[5] B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik.
Hypercolumns for object segmentation and fine-grained lo-
calization. CoRR, abs/1411.5752, 2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[7] S. Hochreiter and J. Schmidhuber. Long short-term memory,
1995.

[8] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected
convolutional networks. CoRR, abs/1608.06993, 2016.

[9] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Wein-
berger. Deep networks with stochastic depth. CoRR,
abs/1603.09382, 2016.

[10] A. Karpathy. What i learned from competing against a con-
vnet on imagenet, 2014.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[12] G. Larsson, M. Maire, and G. Shakhnarovich. Fractal-
net: Ultra-deep neural networks without residuals. CoRR,
abs/1605.07648, 2016.

[13] P. Li, J. Xie, Q. Wang, and W. Zuo. Is second-order infor-
mation helpful for large-scale visual recognition? CoRR,
abs/1703.08050, 2017.

7



[14] Z. Liao and G. Carneiro. Competitive multi-scale convolu-
tion. CoRR, abs/1511.05635, 2015.

[15] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,
abs/1312.4400, 2013.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[17] N. Silberman and S. Guadarrama. Tensorflow-slim im-
age classification library. https://github.com/
tensorflow/models/tree/master/slim, 2013.

[18] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep in-
side convolutional networks: Visualising image classifica-
tion models and saliency maps. CoRR, abs/1312.6034, 2013.

[19] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

[21] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway
networks. CoRR, abs/1505.00387, 2015.

[22] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,
inception-resnet and the impact of residual connections on
learning. CoRR, abs/1602.07261, 2016.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842,
2014.

[24] T. Tieleman and G. Hinton. Lecture 6.5 - rmsprop, coursera:
Neural networks for machine learning, 2012.

[25] S. Yang and D. Ramanan. Multi-scale recognition with dag-
cnns. CoRR, abs/1505.05232, 2015.

[26] S. Zagoruyko and N. Komodakis. Wide residual networks.
CoRR, abs/1605.07146, 2016.

8

https://github.com/tensorflow/models/tree/master/slim
https://github.com/tensorflow/models/tree/master/slim

