
Tiny ImageNet Challenge

Yinbin Ma
Stanford University
yinbin@stanford.edu

Abstract

In this project we classify the images in the Tiny Ima-
geNet dataset. We use residual networks on GPU using Py-
Torch. We first train a residual network from scratch, ex-
ploring the effect of different weight initialization and acti-
vation function during the training process. We then attempt
to increase the validation and test accuracy starting from a
pre-trained model. We use ResNet-18 to achieve 31.6% test
error on the evaluation server.

1. Introduction

Convolution neural network (CNN) is a powerful tool for
image classification [7]. With the development of residual
networks, training a deep network becomes feasible [7, 8],
and the accuracy has surpassed human interpreters. In this
project, we use residual network to study the training pro-
cess on the tiny ImageNet dataset.

In section 2, we briefly discuss the background and re-
lated work. In section 3, we show the Tiny ImageNet dataset
which is used to train the model. In section 4, the meth-
ods for this work is explained including the configuration
of residual network, optimization procedure and technique
to overcome overfitting problems. In section 5, we show
numerical experiments we have done during this project.
We first train the models to overfit a small subset of the
training dataset. We then explore the effect of weight ini-
tialization and activation function during the training proce-
dure. Training a classifier from scratch has been tried and
we achieve ∼ 40% validation accuracy. In section 6, we at-
tempt build a classifier using transfer learning. We fine tune
the training process, and we achieved 31.6% test accuracy
computed by the evaluation server using ResNet-18 config-
uration. In section 7, we study the mislabeled images from
the validation set.

2. Background and related work

The basic frame work for this project is the deep resid-
ual network [6, 8, 7] proposed in 2015. The key idea is

to add an identity mapping to the convolution layers. With
the identity mapping, training deep neural network becomes
possible. Many Variation of the residual network has been
proposed including using different identity mapping func-
tion [9]. In this project, we use a simple residual network
(ResNet-18) to classify the Tiny ImageNet dataset.

The training procedure is affected by the weight initial-
ization [4, 11, 8]. and the choice of activation [7, 3, 5]. In
this project we use different weight initialization and recti-
fier during the training procedure.

Limited by the size and quality of the training set, train-
ing a classifier from scratch is challenging in this project.
An efficient way to train a model is to use transfer learning
technique [10] to extract features from a pre-trained model.
In this work, we build a classifier starting from a pre-trained
ResNet-18 model with the help of existing code [2, 1].

3. Tiny ImageNet Dataset

The Tiny ImageNet dataset contains images with 200
different categories. The training set has 105 images and
each category contains 500 images. The validation set and
test set has 104 images (50 images per category). Each im-
age is 64 × 64 in size. The Tiny ImageNet dataset comes
from ILSVRC benchmark test but with fewer categories and
lower resolution.

In Figure 1 we plot a few images from 7 categories. The
resolution of the images limits our ability to achieve high
accuracy. In the numerical experiments, we can achieve
50% ∼ 60% accuracy if the model is trained from scratch,
and 30% ∼ 35% accuracy when transfer learning is applied.
In either case, the accuracy is lower than the reported results
on ILSVRC benchmark using deep residual networks [8].

4. Methods

In this section we describe the deep residual network for
the image classification problem, the optimization process,
and the evaluation methods.

1



Figure 1. Samples of images from the Tiny ImageNet dataset

4.1. Residual Network

We use the residual network developed recently [8].
Deep residual networks with different depth have been ex-
plored, from ResNet-18 to ResNet-152 [8]. The network
with 152 layers achieved 3.5% error rate on the ILSVRC
benchmark test in 2015 [7].

Due to the limited number of resource for the project, we
used the simplest configuration ResNet-18 in this project.
Training from scratch and transfer learning are both ex-
plored in this study.

The basic building block for residual network is shown
in Figure 2. Comparing with CNN building blocks, there is
an identity mapping on top of the nonlinear layers. With the
identity mapping, we can skip arbitrary layers in principle.
The identity mapping linearizes the problem which simplify
the optimization procedure.

Figure 2. building block for residual learning. Image from [8].

In Figure 3 we show the configuration of ResNet-18
model. The input images are first convolved with 64 fil-
ters with size 7× 7, and then followed by batch normaliza-
tion, rectifier, and max pooling. 8 residual learning building
blocks are applied afterward with 3×3 filters. Finally a fully
connected layer with size 512×200 are used to compute the
scores for each class and to compute the loss function.

Figure 3. ResNet-18 configuration. It has a 7 × 7 convolution
followed by 8 residual network building blocks with 3× 3 convo-
lution. Fully connected layer with 200 output is used to compute
the label and loss function at the end.

4.2. Optimization procedure

We use softmax classifier to predict the labels, and com-
pute the loss function using cross entropy,

Li = − log

(
esyi∑
j e

sj

)
(1)

where Li the loss function for image i, and sj are the output
from the fc-200 layer.

To minimized the loss function, we can use differ-
ent optimization tool including Stochastic gradient descent
(SGD), SGD+momentum, RMSProp, etc. For this work,
we use Adam algorithm, which utilizes the first and second
moments in the optimization procedure.

The optimization procedure is also affected by the choice
of hyperparameters, such as learning rate, weight decay,
dropout rate, etc.

2



In addition, the weight initialization and the choice of
activation function play important roles in the training pro-
cedure. Proper weight initialization such as random Gaus-
sian initialization or Xavier initialization have better per-
formance comparing with uniform random initialization or
zero initialization. ReLU is used in the ResNet-18 as the
default rectifier, and it may suffer from gradient saturation
problem. LeakyLU and ELU have been proposed to over-
come the saturation problem. In the numerical experiments
section, we are going to explore the effect of weight initial-
ization and activation function.

4.3. Overfitting problem

We have 500 images per category for the Tiny ImageNet
dataset. Considering the fact the ResNet-18 is designed for
the original ImageNet Dataset with 1000 categories, it can
easily overfit the Tiny ImageNet dataset. To increase vali-
dation accuracy and test accuracy, we need to overcome the
overfitting problem.

Dropout and model regularization are commonly used to
prevent overfitting. For dropout, we randomly set neurons
to zero and only use part of the network to predict the label.
It forces the network to have a redundant representation.
The regularization technique add terms to the loss function
which depends on the weight of the parameters. In case of
L2 norm regularization, it is equivalent to adding a weight
decay during training process. Since we have tested dropout
and regularization in the assignments, they are not studied
in this work.

Data augmentation is another useful technique to prevent
overfitting. By simply flipping the images horizontally, we
can double the size of training dataset although the flipped
images has the same statistics (mean, variance, etc). Ran-
dom crops and scales are also used for data augmentation.
We use data augmentation in section 6 to achieve low vali-
dation and test error rate.

5. Numerical Experiments

In this section we show several numerical experiments
on the Tiny ImageNet dataset using residual network.

5.1. Overfitting a Small Dataset

As a sanity check, we want to overfit a small dataset us-
ing the residual network. We choose 100 images from the
training set. Model from scratch and pre-trained model are
both tested. In Figure 4, we show the training accuracy as
a function of epochs, where learning rate 10−4 is used. For
the pre-trained model, we have reasonable convolution lay-
ers, and we can overfit within 10 iterations. When we train
from scratch, it takes around 40 iterations to overfit.

Figure 4. Top: accuracy using pre-trained model. Bottom: accu-
racy with model trained from scratch. We use model ResNet-18
configuration, learning rate 10−4.

5.2. Weight Initialization

The residual network has only one fully connected layer
(not followed by activation layer). The default constructor
use uniform random number for the weighting function, and
we compare it with Xavier initialization, where the weight
distributions are shown in Figure 5. We train the models
from scratch for 1 epoch (around 390 iterations), and the
loss functions are shown in Figure 6.

The initial loss function for Xavier initialization is higher
than the default uniform initialization and it decays faster.
After iteration 30 they are indistinguishable. At the end of
the first epoch, we achieve 0.1723 accuracy for the training
set, 0.148 for the validation set using Xavier initialization.
As a comparison, default initialization has 0.147 training
accuracy and 0.119 validation accuracy. No conclusion can
be made at stage.

5.3. Activation Function

Activation function introduces nonlinearity in the neural
networks. ReLU is commonly used for CNNs, and it is also
the default rectifier for ResNet-18. Other popular rectifiers
includes Leaky ReLU and ELU as shown in Figure 7. The
ReLU suffers from gradient saturation at x < 0 while Leaky
ReLU does not.

We use 3 different activation function, ReLU, leaky

3



Figure 5. Top: histogram of default weight initialization for the
fully connected layer. Bottom: histogram of Xavier initialization.

Figure 6. Loss function for different weight initialization. Xavier
initialization has higher initial loss and the loss function decays
faster.

ReLU and ELU in the residual network. We train the mod-
els from scratch with learning rate 10−4. After 1 epoch, the
loss functions are shown in Figure 8. The loss function for
ReLU and leaky ReLU are overlapping with each other and
no observable difference has been found. The loss for ELU
is slight better than ReLU for the first 200 iterations.

−10 −5 0 5 10
−1

0

1

2

3

4

5

6

7

8

9

10
ReLU

−10 −5 0 5 10
−1

0

1

2

3

4

5

6

7

8

9

10
Leaky ReLU

−10 −5 0 5 10
−1

0

1

2

3

4

5

6

7

8

9

10
ELU

Figure 7. Activation function. Left: ReLU. Middle: leaky ReLU.
Right: ELU.

5.4. Train the Model From Scratch

After we have gained experience on the residual network
and the dataset, we train a model from scratch to achieve
low error rate. We use all the training images (105), mini-

Figure 8. Loss function with different activation function. The loss
function suggests that ELU is slightly better than ReLU.

batch size is set to 256 (390 iteration per epoch), learning
rate is set to 10−4 for the first 7 epochs, and we use weight
decay 10−4 during the training process.

The loss function is shown in Figure 13. The loss func-
tion is decaying as a function of number of iteration, as ex-
pected. The accuracy as a function of epochs is shown in
Figure 11. After 10 epochs, we get ∼ 40% validation accu-
racy.

The validation accuracy is significant lower than the case
of using learning transfer which we will discuss in the next
section. To understand the difference, we visualize the fil-
ters at Figure 9. We start from filters with random weight,
and after 10 epochs, the filters shown different illumina-
tion but no clear pattern can be observed. As a comparison,
the filters from the pre-trained model is shown in Figure 9,
where they can be interpreted as edge detection filter, etc.

6. Use Pre-trained model to Increase Accuracy
In this section we try to increase the validation and test

accuracy using learning transfer. We import the convolution
filters from a pre-trained ResNet-18 model. The pre-trained
model has 1000 classes while we have 200, therefore we
need to train the last fully connected layer.

We use the following procedure to get 0.316 test accu-
racy:

1. For epoch 1 and 2, we fix the convolution layers and
only train the last fully connected layer with learning
rate 10−3.

2. For epoch 3 to 5. We train all the parameters in the
network, with learning rate 10−4, weight decay 10−4.
At the end of epoch 5, the training accuracy reaches
0.976 and we could not improve the validation accu-
racy anymore.

3. For epoch 6, we use random crop and random horizon-
tal flip on the training set, with learning rate 10−5. The
validation accuracy decreases at this step.

4



Figure 9. Top left: convolution filters of the first layer after ini-
tialization. Top right: convolution filters of the first layer after 2
epochs. Bottom left: convolution filters of the first layer after 6
epochs. Top right: convolution filters of the first layer after 10
epochs.

Figure 10. Loss function when we train the model from scratch.

Figure 11. Training and validation accuracy when we train the
model from scratch.

4. For epoch 7, we train all the parameters with learning
rate 10−5. At the end of epoch 7, we get 0.067 training
error, 0.257 validation error, and 0.316 test error.

5. After epoch 7, we try different strategies, such as using
a subset of the training set and for a few epochs. The
idea is to test if we can find different local minimum of
the loss function that achieves better test accuracy. No
further improvement has been observed.

In Figure 13 we show the loss function and in Figure
14 we show the train and validation accuracy. Notice that
data augmentation is applied at epoch 6 (random crop and
random horizontal flip) which reduces the accuracy.

The convolution filters at the first layer are shown in Fig-
ure 12. On the left of Figure 12 is the filters from pre-trained
model, and on the right is the filters after our training pro-
cess. It is interesting to notice that while most of the filters
remain unchanged, some filters have significant update (the
filter at row 1, col 3, and the filter at row 5, col 7, for exam-
ple).

Figure 12. Left: convolution filters from the pre-trained model.
Right: convolution filters after our training process.

Figure 13. Loss function during the training process. Before itera-
tion 780 we only train the last fully connected layer. From iteration
780 to iteration 1950 we train all the parameters, using the same
data processing for training and validation set. From iteration 1950
to 2340 we use different data processing for the training set to pre-
vent overfitting. After iteration 2340, the same data processing is
applied.

7. Error Analysis
In this section we briefly discuss the validation and test

error. The best test error rate we have obtained is 31.6%

5



Figure 14. Training and validation accuracy during the training
process. Decrease of training accuracy at epoch 6 is observed be-
cause we use random crop and random horizontal flip.

which is higher than the reported error rate in the ImageNet
Challenge [7]. Since we have reached high accuracy on the
training set (> 0.97), we do not expect significant further
improvement on the test dataset.

To understand the error, we selected a couple of misla-
beled images from the validation dataset as shown in Figure
15. One of the mislabeled image (left image in Figure 15)
belongs to n02085620 (Chihuahua) while our model predict
it to be n04399382 (teddy bear). The error is expected be-
cause of the low resolution, and the chihuahua has cloth on
which is uncommon in the training set. Another mislabeled
image (right image in Figure 15) belongs to n04118538
(football) while we predict it to be n04540053 (volleyball).
Again the error is not surprising due to the color of the ball
(yellow-green is common in volleyball but not in football),
and the action of the player (looks like he is spiking the
ball).

Figure 15. Mislabeled image from the validation dataset.
Left: predicted label n04399382 (teddy bear) and actual label
n02085620 (chihuahua). Right: predicted label n04540053 (vol-
leyball) and actual label n04118538 (football).

8. Conclusions
In conclusion, we classify the images in the Tiny Ima-

geNet dataset in this project. We train deep residual net-
work on GPU using PyTorch library. We study the effect of
different weight initialization and activation function dur-

ing the training process. Training a classifier from scratch
is challenging due to the low resolution and low quantity
of training images. We use a pre-trained model ResNet-
18 and fine tune the training procedure to achieve 31.6%
test error and 25.6% validation error for the Tiny ImageNet
challenge.

References
[1] Pre-trained resnet-18. https://download.pytorch.

org/models/resnet18-5c106cde.pth.
[2] Pytorch tutorial for data loading and fine tuning.

https://gist.github.com/jcjohnson/
6e41e8512c17eae5da50aebef3378a4c.

[3] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (elus).
CoRR, abs/1511.07289, 2015.

[4] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Aistats, vol-
ume 9, pages 249–256, 2010.

[5] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. Maxout Networks. ArXiv e-prints, Feb. 2013.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In The IEEE International Conference on
Computer Vision (ICCV), December 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rec-
tifiers: Surpassing Human-Level Performance on ImageNet
Classification. ArXiv e-prints, Feb. 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In ECCV, 2016.

[10] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. CNN features off-the-shelf: an astounding baseline for
recognition. CoRR, abs/1403.6382, 2014.

[11] D. Sussillo and L. F. Abbott. Random Walk Initialization for
Training Very Deep Feedforward Networks. ArXiv e-prints,
Dec. 2014.

6

https://download.pytorch.org/models/resnet18-5c106cde.pth
https://download.pytorch.org/models/resnet18-5c106cde.pth
https://gist.github.com/jcjohnson/6e41e8512c17eae5da50aebef3378a4c
https://gist.github.com/jcjohnson/6e41e8512c17eae5da50aebef3378a4c

