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Abstract 

 
The goal of the image recognition task is to be able to 

correctly predict the subject of an image. The ImageNet 

Large Scale Visual Recognition challenge [7] is run every 

year to determine the state of the art in image recognition. 

For this project, due to the restrictions on time and 

resources, we worked with a smaller dataset, Tiny-

ImageNet [1], and attempted to train an image classifier 

using this data.  

We applied a wide variety of techniques to achieve a high 

classification accuracy on Tiny-ImageNet. These 

techniques include residual architectures, data 

augmentation, cyclic learning rates, and snapshot 

ensembles. 

1. Background 

 

1.1 Introduction 
 

Image recognition is a prominent and important task for 

which convolutional neural networks have proved very 

effective. Furthermore, the task has numerous important 

practical applications. Many industries are affected by the 

task of image classification, such as security, entertainment, 

and augmented reality. A wide variety of computer systems 

are aided by this technology, and improvements in the 

technology are vital for improvement in these systems. 

To frame the problem more precisely, we describe our 

inputs and outputs: 

• Our inputs for this task are images from the Tiny 

ImageNet database. Each image is 64x64x3. 

• Our output for this task is the class label corresponding 

to the class we predict the image belongs in. If this is 

the class associated with the image, we have made a 

correct prediction. 

1.2 Related Work 

Convolutional Neural Networks represent the state of the 

art in image classification. AlexNet [2] is a Deep 

Convolutional Neural Network that was used to win the 

2012 ImageNet competition. It was the first of many Deep 

CNN architectures to win the challenge, and set the stage 

for the explosion of research in the area. The architecture is 

relatively simple when compared to the more complex 

architectures representing the state of the art. AlexNet 

contains multiple convolutional and max pooling layers, 

followed by three dense layers. 

Another famous architecture for image classification is 

VGGNet [9]. VGGNet is similar to AlexNet, with some 

slight improvements, including using random scaling for 

data augmentation. 

GoogLeNet [10] is another ImageNet winner that 

improved on AlexNet and VGGNet by using so called 

inception modules. Inception modules use multiple filter 

sizes at each layer and concatenate the results together. This 

allows the network to learn features of different sizes at 

each layer in the network. 

Recently, ResNets utilizing residual connections have 

become the most popular genre of model. Residual 

connections are special connections from the output of one 

layer of a network to the output of another layer further 

forward in the network. This allows gradients to propagate 

through much deeper networks more easily. 

 Cyclic learning rates (SGD with warm restarts) have 

been shown to help with model performance [11]. 

Collections of models, known as ensembles, are commonly 

used to make a joint prediction that is better than the 

predictions of any of the component models. This is 

because the different models in the ensemble converge to 

different local minima, and have different classification 

boundaries. Using many models together helps to lower the 

variance in predictions, resulting in a higher accuracy. 

2. Approach 

2.1 Dataset 

We use the standard Tiny-ImageNet dataset. This dataset 

consists of 100,000 training images, 10,000 validation 

images, and 10,000 testing images that are all (64,64,3) and 

fall into 200 classes. These images are taken from the 

ImageNet dataset, cropped to be square, and resized to be 

64x64. Due to this process, the images tend to be very 

pixelated, and occasionally missing key features. Examples 

of difficult to classify images from the training set are given 

in Figure 1. 

 

 

 

Techniques for Image Classification on Tiny-ImageNet 
 

Zach Barnes 

Stanford University 

Stanford, CA 
zbarnes@stanford.edu 

 

Frank Cipollone 

Stanford University 

Stanford, CA 
fcipollo@stanford.edu 

 

 

Tyler Romero 

Stanford University 

Stanford, CA 

tromero1@stanford.edu 
 

   

 



 

2 

2.2 Data Augmentation 

Heavy data augmentation was necessary in order to 

prevent our model from strongly overfitting to the dataset. 

We preprocessed the data by performing mean subtraction. 

When preparing each batch of images for training, we 

would horizontally flip each image with probability 0.5, and 

we would take a random crop of each image of size 56x56. 

These methods were suggested in [2]. 

When making a prediction on an image, we take ten 

crops (also of size 56x56) of that image (the four corners, 

the center, and their horizontal flips) and make a prediction 

on each one, and then average the SoftMax probabilities to 

make a final prediction. The colored section of figure 2 

represents one of the original five crops. As we will show, 

these changes significantly reduced overfitting. 

 

2.3 Models 

All our models take a 56x56x3 input image and produce 

a predicted class label by taking the argmax across a 

SoftMax probability distribution. 

We first implement our baseline to get an understanding 

of the problem. Our baseline, our AlexNet model, uses an 

architecture identical to the original AlexNet, except that 

the filter sizes and strides are adjusted to be more 

appropriate for the smaller input images from Tiny-

ImageNet. The exact architecture is available in the 

appendix. 

We also have experimented with an inception network, 

based off the GoogleNet [10], to try and achieve a 

performance improvement over our baseline. We 

eventually abandoned InceptionNets for ResNets, which 

proved easier to train. 

ResNets [3] were our primary model class. We 

experimented with various depths and residual block 

architectures to maximize our model accuracy. The residual 

block that we used in our experiments is depicted in Figure 

2, and the entire ResNet architectures used are in the 

appendix. 

A simple extension of ResNets are WideResNets [4], 

which have an improved residual block structure, and have 

more filters per layer. WideResNets are generally shallower 

than the ultra-deep ResNets that have been successful on 

the ImageNet challenge, but WideResNets have proven 

extremely successful on competitions related to Tiny-

ImageNet, such as CIFAR-100. The wide residual block 

that we used is depicted in Figure 3. 

birdhouse bikini sunglasses skirt 

Figure 1 

Figure 3 

Residual Block Wide Residual Block 

Figure 2 
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2.4 Regularization 

We found that our models continued to overfit, even 

when using data augmentation. Due to this, we 

experimented with L2 regularization as in [2] and dropout 

[15] as in [4]. In addition, we attempted to provide implicit 

regularization by shifting to thinner, shallower models with 

fewer parameters.  

2.5 Snapshot Ensembles 

One of the core features of our training framework was 

the ability to create snapshot ensembles [5]. Shapshot 

ensembling refers to a framework that allows for ensembles 

of models to be created in the time it would typically take 

to train a single model. Snapshot ensembles accomplish this 

using a cyclic learning rate that periodically dislodges the 

model from its local minima. A snapshot of the model 

parameters is taken immediately before they are dislodged. 

At the end of each cycle, the model converges to a different 

local minimum, giving a different decision boundary. The 

cycles are much shorter than a typical training session, but 

by ensembling the snapshots, a higher validation accuracy 

can be reached relative to a single model trained in the same 

amount of time. 

We used the following formula from [5] for learning rate 

as a function of step number, where 𝛼 is the initial learning 

rate, 𝑇 is the total number of steps to train on, and 𝑀 is the 

total number of cycles desired. 

𝑙𝑟(𝑡) =
𝛼

2
(cos(𝜋 ∗

(𝑡 − 1)𝑚𝑜𝑑 (
𝑇
𝑀
)

𝑇
𝑀

)+ 1) 

Figure 3 is a plot of the learning rate formula. The shifted 

cosine formula allows for the model to dislodge itself with 

a high learning rate, and then quickly lower the learning rate 

so that the model can settle to a different local minimum. 

Snapshots are taken at the bottom of each cycle. 

Snapshot ensembling was especially valuable due to our 

computational constraints.  

3. Experiments and Results 

3.1 Experimentation Details 

We used the Adam Optimizer [8] with an initial learning 

rate of 0.001 to train our models. All nonlinearities are 

ReLUs [2]. Where L2 weight decay was used, we used a 

coefficient of 0.0001. In addition, all our models were given 

a training budget of 72 epochs. Our image preprocessing 

and augmentation consisted of mean subtraction, random 

crops, and random flips. 

Our snapshot ensembles were trained such that there was 

a cycle every 12 epochs, for a total of 6 cycles (and 

therefore, 6 snapshots). We would disregard the snapshot 

generated by the first cycle because typically it had not yet 

reached an acceptable validation accuracy. 

Our models trained using a standard procedure had the 

learning rate cut by 10 every 24 epochs. This would give 

the loss time to plateau before each decay. We used early 

stopping to help prevent overfitting. 

3.2 Evaluation Metrics 

Top-1 and top-5 validation and testing accuracies were 

used to evaluate our models. Top-1 accuracy refers to the 

accuracy a model achieves when it predicts only the class 

that it believes is most likely. Top-5 accuracy, however, 

refers to the accuracy a model achieves when a model 

predicts the five classes that it believes the image contains. 

If any of these five classes are correct, then that image is 

considered correctly classified. Top-5 validation accuracy 

leads to higher scores, but it also makes sense in the context 

of image classification due to the extreme similarity 

between certain classes, such as Siberian huskies and 

Eskimo dogs [10]. 

3.3 Results 

Table 1 summarizes the results our models achieved. All 

values are accuracy rates. ‘a’ indicates that data 

augmentation was used, ‘d’ indicates that weight decay was 

used, and ‘snap’ indicates that snapshot ensembling was 

used. 

 

Table 1: Results 

Figure 3 
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3.4 Discussion 

Adding data augmentation to AlexNet made an 

enormous difference in validation accuracy. Without data 

augmentation, AlexNet easily overfits the training data. We 

found this to be true for every model architecture we tried. 

Data augmentation is an extremely useful technique for the 

Tiny-ImageNet competition.  

Switching to the ResNet34 architecture gave us a boost 

in performance over AlexNet. This could be because 

ResNet18 model was much deeper, or because it has less 

parameters and is easier to train. 

Our models all tend to overfit in the second half of 

training, so we thought to add additional regularization in 

the form of L2 weight decay. Weight decay successfully 

helped reduce some overfitting, resulting in higher 

validation accuracies. 

The use of dropout hurt performance in our ResNet 

models. We believe this could be due to the fact that our 

models have small sizes, which is not conducive to the use 

of dropout. We ended up not using dropout in any of our 

final models. 

WideResNets offered some improvement over 

ResNet34, which could be attributed to the better design of 

the residual block. 

 Our models continued to overfit, even with all the 

regularization techniques we incorporated. To further 

regularize, we decided to try a smaller, shallower model: 

ResNet18. The smaller capacity of ResNet18 helps to 

combat overfitting. ResNet18 was our best individual 

model. 

 The addition of snapshot ensembling and cyclic learning 

rates gave us a significant improvement in validation 

accuracy. We found that using cyclic learning rates, even 

without snapshot ensembling, gave us validation accuracies 

that were higher than their counterparts trained using our 

standard method. 

With snapshot ensembling, we saw jumps in top-1 

validation accuracies of about 0.02. Due to the time 

constraints on class projects, we found snapshot 

ensembling to be a very efficient way to gain some of the 

benefits of ensembling without having to spend the time 

and resources required to train several individual models. 

The biggest challenge on Tiny-ImageNet is overfitting. 

Even with our data augmentation and regularization 

schemes, our models could achieve a testing accuracy of 

99% after 72 epochs. Additional regularization techniques 

and better hyperparameter tuning may help future models 

achieve a higher validation accuracy on Tiny-ImageNet. 

4. Conclusion 

4.1 Future Work 

We have several ideas for improving validation accuracy 

on Tiny-ImageNet that we have not yet tested.  

We believe that transferring a model that was trained on 

ImageNet to the Tiny-ImageNet task would be an effective 

way to achieve a higher validation accuracy. This is because 

a primary limitation of models trained on Tiny-ImageNet is 

the relative lack of data available, and the ImageNet model 

would be pre-trained on more data that Tiny-ImageNet 

contains, and therefore may have learned better features. 

Full ensembling results in larger improvements to 

validation accuracy than snapshot ensembling according to 

[5], so using full ensembling may result in a higher top-1 

validation accuracy for our current models. 

Additional data regularization may result in some 

improvement. There are standard techniques such as scale 

and color augmentation that may prove effective. 

4.2 Acknowledgements 

We like the general framework for Tensorflow models 

supplied by [12], and we use a modified version of this 

framework as we implemented our models. We borrowed 

data loading functions for Tiny ImageNet and CIFAR-10 

from [13]. Small sections of code, such as batch creation, 

were reused from a previous project of ours [14] that is 

unrelated to image classification. 

Our models were implemented in Tensorflow [6]. 

4.3 Source Code 

Our code can be found at: 

https://github.com/fcipollone/TinyImageNet 
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6. Appendices 

6.1 SimpleAlexNet 

 

Conv7, stride=2, filters=48 

Conv5, stride=1, filters=48 

MaxPool2, stride=2 

Batch Normalization 

Conv5, stride=1, filters=128 

MaxPool2, stride=2 

Batch Normalization 

Conv3, stride=1, filters=192 

Conv3, stride=1, filters=192 

Conv3, stride=1, filters=128 

MaxPool2, stride=2 

Affine, 2048 hidden units, relu activation 

Affine, 2048 hidden units, relu activation 

Affine, 200 output units, no activation 

Appd 1: SimpleAlexNet Architecture 

 

6.2 ResNet34 Architecture 

Conv3, stride=1, filters=64 

Batch Normalization 

ReLU 

ResLayer, stride=1, filters=64 

ResLayer, stride=1, filters=64 

ResLayer, stride=1, filters=64 

ResLayer, stride=1, filters=64 

ResLayer, stride=2, filters=128 

ResLayer, stride=1, filters=128 

ResLayer, stride=1, filters=128 

ResLayer, stride=1, filters=128 

ResLayer, stride=2, filters=256 

ResLayer, stride=1, filters=256 

ResLayer, stride=1, filters=256 

ResLayer, stride=1, filters=256 

ResLayer, stride=2, filters=512 

ResLayer, stride=1, filters=512 

ResLayer, stride=1, filters=512 

ResLayer, stride=1, filters=512 

AvgPool of entire output 

Affine, 200 output units, no activation 

Appd 2: ResNet34 Architecture 
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6.3 ResNet18 Architecture 

Conv3, stride=1, filters=64 

Batch Normalization, ReLU 

ResLayer, stride=1, filters=64 

ResLayer, stride=1, filters=64 

ResLayer, stride=2, filters=128 

ResLayer, stride=1, filters=128 

ResLayer, stride=2, filters=256 

ResLayer, stride=1, filters=256 

ResLayer, stride=2, filters=512 

ResLayer, stride=1, filters=512 

AvgPool of entire output 

Affine, 200 output units, no activation 

Appd 3: ResNet18 Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 WideResNet32-k Architecture 

Conv3, stride=1, filters=64 

WideResLayer, stride=1, filters=16*k 

WideResLayer, stride=1, filters=16*k 

WideResLayer, stride=1, filters=16*k 

WideResLayer, stride=1, filters=16*k 

WideResLayer, stride=2, filters=32*k 

WideResLayer, stride=1, filters=32*k 

WideResLayer, stride=1, filters=32*k 

WideResLayer, stride=1, filters=32*k 

WideResLayer, stride=2, filters=64*k 

WideResLayer, stride=1, filters=64*k 

WideResLayer, stride=1, filters=64*k 

WideResLayer, stride=1, filters=64*k 

AvgPool of entire output 

Affine, 200 output units, no activation 

Appd 4: WideResNet32-k Architecture 

 

 


