

1

Abstract

The goal of the image recognition task is to be able to

correctly predict the subject of an image. The ImageNet

Large Scale Visual Recognition challenge [7] is run every

year to determine the state of the art in image recognition.

For this project, due to the restrictions on time and

resources, we worked with a smaller dataset, Tiny-

ImageNet [1], and attempted to train an image classifier

using this data.

We applied a wide variety of techniques to achieve a high

classification accuracy on Tiny-ImageNet. These

techniques include residual architectures, data

augmentation, cyclic learning rates, and snapshot

ensembles.

1. Background

1.1 Introduction

Image recognition is a prominent and important task for

which convolutional neural networks have proved very

effective. Furthermore, the task has numerous important

practical applications. Many industries are affected by the

task of image classification, such as security, entertainment,

and augmented reality. A wide variety of computer systems

are aided by this technology, and improvements in the

technology are vital for improvement in these systems.

To frame the problem more precisely, we describe our

inputs and outputs:

• Our inputs for this task are images from the Tiny

ImageNet database. Each image is 64x64x3.

• Our output for this task is the class label corresponding

to the class we predict the image belongs in. If this is

the class associated with the image, we have made a

correct prediction.

1.2 Related Work

Convolutional Neural Networks represent the state of the

art in image classification. AlexNet [2] is a Deep

Convolutional Neural Network that was used to win the

2012 ImageNet competition. It was the first of many Deep

CNN architectures to win the challenge, and set the stage

for the explosion of research in the area. The architecture is

relatively simple when compared to the more complex

architectures representing the state of the art. AlexNet

contains multiple convolutional and max pooling layers,

followed by three dense layers.

Another famous architecture for image classification is

VGGNet [9]. VGGNet is similar to AlexNet, with some

slight improvements, including using random scaling for

data augmentation.

GoogLeNet [10] is another ImageNet winner that

improved on AlexNet and VGGNet by using so called

inception modules. Inception modules use multiple filter

sizes at each layer and concatenate the results together. This

allows the network to learn features of different sizes at

each layer in the network.

Recently, ResNets utilizing residual connections have

become the most popular genre of model. Residual

connections are special connections from the output of one

layer of a network to the output of another layer further

forward in the network. This allows gradients to propagate

through much deeper networks more easily.

 Cyclic learning rates (SGD with warm restarts) have

been shown to help with model performance [11].

Collections of models, known as ensembles, are commonly

used to make a joint prediction that is better than the

predictions of any of the component models. This is

because the different models in the ensemble converge to

different local minima, and have different classification

boundaries. Using many models together helps to lower the

variance in predictions, resulting in a higher accuracy.

2. Approach

2.1 Dataset

We use the standard Tiny-ImageNet dataset. This dataset

consists of 100,000 training images, 10,000 validation

images, and 10,000 testing images that are all (64,64,3) and

fall into 200 classes. These images are taken from the

ImageNet dataset, cropped to be square, and resized to be

64x64. Due to this process, the images tend to be very

pixelated, and occasionally missing key features. Examples

of difficult to classify images from the training set are given

in Figure 1.

Techniques for Image Classification on Tiny-ImageNet

Zach Barnes

Stanford University

Stanford, CA
zbarnes@stanford.edu

Frank Cipollone

Stanford University

Stanford, CA
fcipollo@stanford.edu

Tyler Romero

Stanford University

Stanford, CA

tromero1@stanford.edu

2

2.2 Data Augmentation

Heavy data augmentation was necessary in order to

prevent our model from strongly overfitting to the dataset.

We preprocessed the data by performing mean subtraction.

When preparing each batch of images for training, we

would horizontally flip each image with probability 0.5, and

we would take a random crop of each image of size 56x56.

These methods were suggested in [2].

When making a prediction on an image, we take ten

crops (also of size 56x56) of that image (the four corners,

the center, and their horizontal flips) and make a prediction

on each one, and then average the SoftMax probabilities to

make a final prediction. The colored section of figure 2

represents one of the original five crops. As we will show,

these changes significantly reduced overfitting.

2.3 Models

All our models take a 56x56x3 input image and produce

a predicted class label by taking the argmax across a

SoftMax probability distribution.

We first implement our baseline to get an understanding

of the problem. Our baseline, our AlexNet model, uses an

architecture identical to the original AlexNet, except that

the filter sizes and strides are adjusted to be more

appropriate for the smaller input images from Tiny-

ImageNet. The exact architecture is available in the

appendix.

We also have experimented with an inception network,

based off the GoogleNet [10], to try and achieve a

performance improvement over our baseline. We

eventually abandoned InceptionNets for ResNets, which

proved easier to train.

ResNets [3] were our primary model class. We

experimented with various depths and residual block

architectures to maximize our model accuracy. The residual

block that we used in our experiments is depicted in Figure

2, and the entire ResNet architectures used are in the

appendix.

A simple extension of ResNets are WideResNets [4],

which have an improved residual block structure, and have

more filters per layer. WideResNets are generally shallower

than the ultra-deep ResNets that have been successful on

the ImageNet challenge, but WideResNets have proven

extremely successful on competitions related to Tiny-

ImageNet, such as CIFAR-100. The wide residual block

that we used is depicted in Figure 3.

birdhouse bikini sunglasses skirt

Figure 1

Figure 3

Residual Block Wide Residual Block

Figure 2

3

2.4 Regularization

We found that our models continued to overfit, even

when using data augmentation. Due to this, we

experimented with L2 regularization as in [2] and dropout

[15] as in [4]. In addition, we attempted to provide implicit

regularization by shifting to thinner, shallower models with

fewer parameters.

2.5 Snapshot Ensembles

One of the core features of our training framework was

the ability to create snapshot ensembles [5]. Shapshot

ensembling refers to a framework that allows for ensembles

of models to be created in the time it would typically take

to train a single model. Snapshot ensembles accomplish this

using a cyclic learning rate that periodically dislodges the

model from its local minima. A snapshot of the model

parameters is taken immediately before they are dislodged.

At the end of each cycle, the model converges to a different

local minimum, giving a different decision boundary. The

cycles are much shorter than a typical training session, but

by ensembling the snapshots, a higher validation accuracy

can be reached relative to a single model trained in the same

amount of time.

We used the following formula from [5] for learning rate

as a function of step number, where 𝛼 is the initial learning

rate, 𝑇 is the total number of steps to train on, and 𝑀 is the

total number of cycles desired.

𝑙𝑟(𝑡) =
𝛼

2
(cos(𝜋 ∗

(𝑡 − 1)𝑚𝑜𝑑 (
𝑇
𝑀
)

𝑇
𝑀

)+ 1)

Figure 3 is a plot of the learning rate formula. The shifted

cosine formula allows for the model to dislodge itself with

a high learning rate, and then quickly lower the learning rate

so that the model can settle to a different local minimum.

Snapshots are taken at the bottom of each cycle.

Snapshot ensembling was especially valuable due to our

computational constraints.

3. Experiments and Results

3.1 Experimentation Details

We used the Adam Optimizer [8] with an initial learning

rate of 0.001 to train our models. All nonlinearities are

ReLUs [2]. Where L2 weight decay was used, we used a

coefficient of 0.0001. In addition, all our models were given

a training budget of 72 epochs. Our image preprocessing

and augmentation consisted of mean subtraction, random

crops, and random flips.

Our snapshot ensembles were trained such that there was

a cycle every 12 epochs, for a total of 6 cycles (and

therefore, 6 snapshots). We would disregard the snapshot

generated by the first cycle because typically it had not yet

reached an acceptable validation accuracy.

Our models trained using a standard procedure had the

learning rate cut by 10 every 24 epochs. This would give

the loss time to plateau before each decay. We used early

stopping to help prevent overfitting.

3.2 Evaluation Metrics

Top-1 and top-5 validation and testing accuracies were

used to evaluate our models. Top-1 accuracy refers to the

accuracy a model achieves when it predicts only the class

that it believes is most likely. Top-5 accuracy, however,

refers to the accuracy a model achieves when a model

predicts the five classes that it believes the image contains.

If any of these five classes are correct, then that image is

considered correctly classified. Top-5 validation accuracy

leads to higher scores, but it also makes sense in the context

of image classification due to the extreme similarity

between certain classes, such as Siberian huskies and

Eskimo dogs [10].

3.3 Results

Table 1 summarizes the results our models achieved. All

values are accuracy rates. ‘a’ indicates that data

augmentation was used, ‘d’ indicates that weight decay was

used, and ‘snap’ indicates that snapshot ensembling was

used.

Table 1: Results

Figure 3

4

3.4 Discussion

Adding data augmentation to AlexNet made an

enormous difference in validation accuracy. Without data

augmentation, AlexNet easily overfits the training data. We

found this to be true for every model architecture we tried.

Data augmentation is an extremely useful technique for the

Tiny-ImageNet competition.

Switching to the ResNet34 architecture gave us a boost

in performance over AlexNet. This could be because

ResNet18 model was much deeper, or because it has less

parameters and is easier to train.

Our models all tend to overfit in the second half of

training, so we thought to add additional regularization in

the form of L2 weight decay. Weight decay successfully

helped reduce some overfitting, resulting in higher

validation accuracies.

The use of dropout hurt performance in our ResNet

models. We believe this could be due to the fact that our

models have small sizes, which is not conducive to the use

of dropout. We ended up not using dropout in any of our

final models.

WideResNets offered some improvement over

ResNet34, which could be attributed to the better design of

the residual block.

 Our models continued to overfit, even with all the

regularization techniques we incorporated. To further

regularize, we decided to try a smaller, shallower model:

ResNet18. The smaller capacity of ResNet18 helps to

combat overfitting. ResNet18 was our best individual

model.

 The addition of snapshot ensembling and cyclic learning

rates gave us a significant improvement in validation

accuracy. We found that using cyclic learning rates, even

without snapshot ensembling, gave us validation accuracies

that were higher than their counterparts trained using our

standard method.

With snapshot ensembling, we saw jumps in top-1

validation accuracies of about 0.02. Due to the time

constraints on class projects, we found snapshot

ensembling to be a very efficient way to gain some of the

benefits of ensembling without having to spend the time

and resources required to train several individual models.

The biggest challenge on Tiny-ImageNet is overfitting.

Even with our data augmentation and regularization

schemes, our models could achieve a testing accuracy of

99% after 72 epochs. Additional regularization techniques

and better hyperparameter tuning may help future models

achieve a higher validation accuracy on Tiny-ImageNet.

4. Conclusion

4.1 Future Work

We have several ideas for improving validation accuracy

on Tiny-ImageNet that we have not yet tested.

We believe that transferring a model that was trained on

ImageNet to the Tiny-ImageNet task would be an effective

way to achieve a higher validation accuracy. This is because

a primary limitation of models trained on Tiny-ImageNet is

the relative lack of data available, and the ImageNet model

would be pre-trained on more data that Tiny-ImageNet

contains, and therefore may have learned better features.

Full ensembling results in larger improvements to

validation accuracy than snapshot ensembling according to

[5], so using full ensembling may result in a higher top-1

validation accuracy for our current models.

Additional data regularization may result in some

improvement. There are standard techniques such as scale

and color augmentation that may prove effective.

4.2 Acknowledgements

We like the general framework for Tensorflow models

supplied by [12], and we use a modified version of this

framework as we implemented our models. We borrowed

data loading functions for Tiny ImageNet and CIFAR-10

from [13]. Small sections of code, such as batch creation,

were reused from a previous project of ours [14] that is

unrelated to image classification.

Our models were implemented in Tensorflow [6].

4.3 Source Code

Our code can be found at:

https://github.com/fcipollone/TinyImageNet

5. References

[1] "Tiny ImageNet Visual Recognition Challenge." Tiny

ImageNet Visual Recognition Challenge. N.p., n.d. Web. 05

June 2017.

[2] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton.

"Imagenet classification with deep convolutional neural

networks." Advances in neural information processing

systems. 2012.

[3] He, Kaiming, et al. "Deep residual learning for image

recognition." Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2016.

[4] Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual

networks." arXiv preprint arXiv:1605.07146 (2016).

[5] Huang, Gao, et al. "Snapshot ensembles: Train 1, get m for

free." arXiv preprint arXiv:1704.00109 (2017).

[6] Abadi, Martín, et al. "Tensorflow: Large-scale machine

learning on heterogeneous distributed systems." arXiv

preprint arXiv:1603.04467 (2016).

[7] Russakovsky, Olga, et al. "Imagenet large scale visual

recognition challenge." International Journal of Computer

Vision 115.3 (2015): 211-252.

[8] Kingma, Diederik, and Jimmy Ba. "Adam: A method for

stochastic optimization." arXiv preprint arXiv:1412.6980

(2014).

[9] Simonyan, Karen, and Andrew Zisserman. "Very deep

convolutional networks for large-scale image recognition."

arXiv preprint arXiv:1409.1556 (2014).

5

[10] Szegedy, Christian, et al. "Going deeper with convolutions."

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2015.

[11] Loshchilov, Ilya, and Frank Hutter. "SGDR: Stochastic

Gradient Descent with Warm Restarts." (2016).

[12] "Assignment #4: Reading Comprehension." CS224n: Natural

Language Processing with Deep Learning. N.p., n.d. Web. 12

June 2017.

<http://web.stanford.edu/class/cs224n/assignment4/index.ht

ml>.

[13] CS231n Convolutional Neural Networks for Visual

Recognition. N.p., n.d. Web. 12 June 2017.

<http://cs231n.github.io/assignments2017/assignment3/>.

[14] Cipollone, Frank, Tyler Romero, and Zach Barnes. "Squad-

reading-comprehension." N.p., n.d. Web.

<https://github.com/zabarnes/squad-reading-

comprehension>.

[15] Srivastava, Nitish, et al. "Dropout: A simple way to prevent

neural networks from overfitting." The Journal of Machine

Learning Research 15.1 (2014): 1929-1958.

6. Appendices

6.1 SimpleAlexNet

Conv7, stride=2, filters=48

Conv5, stride=1, filters=48

MaxPool2, stride=2

Batch Normalization

Conv5, stride=1, filters=128

MaxPool2, stride=2

Batch Normalization

Conv3, stride=1, filters=192

Conv3, stride=1, filters=192

Conv3, stride=1, filters=128

MaxPool2, stride=2

Affine, 2048 hidden units, relu activation

Affine, 2048 hidden units, relu activation

Affine, 200 output units, no activation

Appd 1: SimpleAlexNet Architecture

6.2 ResNet34 Architecture

Conv3, stride=1, filters=64

Batch Normalization

ReLU

ResLayer, stride=1, filters=64

ResLayer, stride=1, filters=64

ResLayer, stride=1, filters=64

ResLayer, stride=1, filters=64

ResLayer, stride=2, filters=128

ResLayer, stride=1, filters=128

ResLayer, stride=1, filters=128

ResLayer, stride=1, filters=128

ResLayer, stride=2, filters=256

ResLayer, stride=1, filters=256

ResLayer, stride=1, filters=256

ResLayer, stride=1, filters=256

ResLayer, stride=2, filters=512

ResLayer, stride=1, filters=512

ResLayer, stride=1, filters=512

ResLayer, stride=1, filters=512

AvgPool of entire output

Affine, 200 output units, no activation

Appd 2: ResNet34 Architecture

6

6.3 ResNet18 Architecture

Conv3, stride=1, filters=64

Batch Normalization, ReLU

ResLayer, stride=1, filters=64

ResLayer, stride=1, filters=64

ResLayer, stride=2, filters=128

ResLayer, stride=1, filters=128

ResLayer, stride=2, filters=256

ResLayer, stride=1, filters=256

ResLayer, stride=2, filters=512

ResLayer, stride=1, filters=512

AvgPool of entire output

Affine, 200 output units, no activation

Appd 3: ResNet18 Architecture

6.4 WideResNet32-k Architecture

Conv3, stride=1, filters=64

WideResLayer, stride=1, filters=16*k

WideResLayer, stride=1, filters=16*k

WideResLayer, stride=1, filters=16*k

WideResLayer, stride=1, filters=16*k

WideResLayer, stride=2, filters=32*k

WideResLayer, stride=1, filters=32*k

WideResLayer, stride=1, filters=32*k

WideResLayer, stride=1, filters=32*k

WideResLayer, stride=2, filters=64*k

WideResLayer, stride=1, filters=64*k

WideResLayer, stride=1, filters=64*k

WideResLayer, stride=1, filters=64*k

AvgPool of entire output

Affine, 200 output units, no activation

Appd 4: WideResNet32-k Architecture

