
Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for
Reduced Scale Classification Problems

Emeric Stéphane Boigné
eboigne@stanford.edu

Jan Felix Heyse
heyse@stanford.edu

Abstract

Scaling of inception modules for reduced size classifica-
tion problem is investigated and a smaller architecture for
200 label datasets is proposed. It is inspired from the orig-
inal GoogleNet designed for 1000 label datasets. The pro-
posed architecture involves four successive inception mod-
ules and is trained using a dataset obtained through some
data augmentation techniques performed on the Tiny Ima-
geNet. The impact of learning rate and weight decay, two
key hyperparameters on the learning process, is analyzed,
and suitable range of values are identified. However, the
proposed architecture is prone to overfitting. Tuning the
number of parameters and using dropout yields better gen-
eralization without loss of performance for a validation ac-
curacy around 45%. Test accuracy reaches 41.3%. Fur-
ther emphasis of this study is made on analyzing more thor-
oughly our architecture and confirming its proper training.
A first analysis is made in the feature space, right before
the last fully connected layer, using dimensionality reduc-
tion techniques. A Principal Component Analysis and a
better performing t-distributed Stochastic Neighbor Embed-
ding are used to show clustering of classes in reduced 3D
space. A second analysis focuses on visualizing features
from intermediate layers through a mapping to the original
image pixels, using backpropagation and Deconvolutional
Neural Networks. Both techniques yield insightful images,
which are used to discuss the performance of our architec-
ture.

1. Introduction and Problem Statement
The Tiny ImageNet is a database used for the training

and testing of neural networks for visual recognition prob-
lems. It comprises a training set of 100, 000 labeled images,
a validation set of 10, 000 labeled images, and a test set of
10, 000 unlabeled images with 200 different classes evenly
distributed among each of the provided sets. The images are
of size 64×64 pixels in gray scale and in RGB color space.

This dataset is used for a competition within the CS
231N class. The goal of this competition and of this project

is to design and train the Convolutional Neural Network
(CNN) that achieves the highest test accuracy.

The present study emphasises on the understanding of
what our CNN is learning. To do so, we use different visual-
ization techniques that provide some insight into the feature
representation at different stages in the network.

2. Technical Approach
2.1. Dataset

The training data is first normalized so that it has zero-
mean and unit variance. The validation and the test sets
are pre-processed with the same normalization values as the
training set. Approximately 2% of the data is not colored,
and for simplicity we initially omitted these gray scale im-
ages. Later, we converted them to 3 channel images with
each channel containing the gray scale values.

We used data augmentation techniques to increase the
amount of available training data. Specifically, we added
for each RGB training image a second one, which was with
equal probability either

• flipped in the horizontal direction,

• rotated clockwise by 6, 8, or 10 degrees, or

• rotated counterclockwise by 6, 8, or 10 degrees.

The resulting augmented training set had 198, 179 images,
almost evenly distributed over the 200 classes.

2.2. Architecture

For the architecture of our CNN, we looked at innova-
tive and competitive neural networks from recent ImageNet
Challenges [1]. In particular, the usage of parallel layers in
so-called inception modules as proposed by Szegedy et al.
[6] is a concept that we are experimenting with. We also
used batch normalization before all activation functions, an
idea first described by Szegedy and Ioffe [4].

2.2.1 Inception Modules

Inception modules are elements in CNNs that consist of par-
allel layers which are concatenated depth-wise. We used

1

parallel convolutions with spatial filters of size 1× 1, 3× 3,
and 5× 5 as well as an average pooling layer. The different
filter sizes and their corresponding receptive fields allow for
identification of features over a wider range of sizes.

Furthermore, our inception modules involved some di-
mensionality reduction in order to reduce the complexity of
the model and the computational costs: The 3× 3 and 5× 5
convolutional layers are preceeded by 1 × 1 convolutional
layers that reduce the depth of the ingoing data. Similarly,
the average pooling layers are followed by such 1× 1 con-
volutional layers.

The structure of the inception module including dimen-
sionality reduction is illustrated in figure 1.

Figure 1: Inception module architecture

It is important to point out that each convolutional layer
in- and outside the inception modules is followed by a batch
normalization and a ReLU activation layer, in order to pro-
vide for non linear operations within the model.

One further advantage of the inception modules is that
they are relatively efficient in terms of memory and op-
erations needed, in particular when compared to the sim-
ilarly well performing VGG neural network by Simonyan
and Zisserman [5], which does not involve any parallel ele-
ments but sequentially stacked a larger number of convolu-
tional layers of filter size 3× 3.

2.2.2 Batch Normalization

Batch normalization is a technique developed to alleviate
the problems resulting from bad weight initialization. It
works by mapping the input into a desired range by spec-
ifying a learnable mean and variance for the output. Batch
normalization layers are commonly used before activation
layers where they can be interpreted as a pre-processing of
the input data.

2.2.3 Overall Architecture

The overall architecture of our CNN is presented in this
subsection. As GoogleNet was the first CNN to take ad-
vantage out of inception modules we oriented ourselves at
their design when developing our own architecture. While

GoogleNet was tuned to work with 1000 different classes,
our task was categorizing into 200 classes, and hence we
decided to reduce the number of parameters accordingly for
our model.

Two different architectures are presented: a baseline one,
and a slightly improved one. They share a common high
level structure that is presented in figure 2.

Figure 2: High level overview of the used CNN architecture

The input to our CNN is a 64 × 64 pixels image with 3
channels from the RGB color representation. It is fed into
a convolutional layer with subsequent batch normalization
and ReLU activation. A 4 × 4 maximum pooling layer re-
duces the spatial dimensions before the first inception mod-
ule. After a 2 × 2 maximum pooling layer there are two
more inception modules. The last inception module follows
another 2×2 maximum pooling layer. In order to reduce the
number of parameters introduced by fully connected layers,

2

we placed a 8 × 8 average pooling layer before the final
affine layer. Finally, a softmax function is used to compute
the class losses.

Tables 1 to 4 in the appendix provide additional infor-
mation regarding the filter sizes and numbers for the layers
in the CNNs and in the inception modules, respectively. In
tables 2 and 4, the red columns as well as the pool column
denote the 1× 1 convolutional layers used for dimensional-
ity reduction.

While the baseline architecture is basically our first
guess, the refined CNN is the result of experimenting with
different parameters in order to obtain a CNN, which gen-
eralizes and does well on the validation set.

Our Python implementation was inspired from the Py-
Torch implementation of the GoogleNet [2].

2.3. Training

2.3.1 Initial Hyperparameter Tuning

Before seriously training our Convolutional Neural Net-
work, we were interested in finding some suitable values
for the learning rate and the weight decay hyperparameters.
To do so, we trained the baseline CNN with 53 randomly
selected configurations for eight epochs and compared the
final validation accuracies. This hyperparameter testing was
performed on a reduced size dataset to keep the computa-
tional expenses low; both training and validation set were
roughly 10% of the original data set size.

The results of this investigation are presented in Figure
3. A learning rate of 1e−4 and a weight decay of 3.16e−5
were chosen for the longer training of the CNNs.

Figure 3: Scatter plot of validation accuracy for hyperpa-
rameter search on small dataset after 8 epochs of training

2.3.2 Training

The convolutional neural networks were trained with these
hyperparameters for 40 epochs. In addition, a smaller-scale
hyperparameter testing was done on the more advanced
CNN and the original data set in order to investigate pos-
sible differences due to the alteration of the architecture
and the different training set size. The results confirmed
the choice of the hyperparameters. The training of the base-
line CNN was done using the original dataset without the
gray scale images, the more advanced CNN was trained on
the augmented dataset. This second CNN also uses dropout
regularization to combat overfitting, and after 25 epochs the
learning rate was manually reduced.

3. Results and Discussion

Figure 4 shows the plotted accuracy histories for both
CNNs. The baseline CNN reaches validation accuracies of
40 − 45%; however, it is clearly overfitting. The second
presented CNN performs similarly well on the validation
set, but it does significantly better in terms of generalizing.
It turned out to be quite difficult to improve the CNN with
respect to both objectives, and we did not improve much
further than 45% validation accuracy.

Figure 4: Accuracy history plot

The test accuracies of the baseline and the more ad-
vanced Convolutional Neural Network were 37.0% and
41.3%, respectively.

3.1. Dimensionality Reduction

Before the fully connected layer in the advanced CNN,
the image is represented by 320 different features. We were
interested in whether we could visualize how the different
classes were separated at that stage. The visualization of a
320 dimensional space is practically not doable, and so we

3

applied two different dimensionality reduction techniques
to get down to 3 dimensions.

The first technique is Principal Component Analysis
(PCA), presented in figure 5, and the second one is t-
distributed stochastic neighbor embedding (t-SNE), pre-
sented in figure 6. In both figures, the samples of the first
three classes from the validation dataset are shown, labeled
as 0, 1, and 2 in the legend.

Figure 5: PCA

The reduced representation from the PCA captures only
15.97% of the total variance in the dataset. It is not yet able
to well separate the different classes. With t-SNE, the sep-
aration works better: Apart from some outliers the classes
are each clustered in separate regions.

Figure 6: t-SNE

These results generally match our expectations. While
we acknowledge that the reduction from 320 to 3 dimen-
sions must be accompanied by a substantial loss of informa-

tion and will not yield a perfect separation, both techniques
to some degree clustered the different classes in separate
areas of the 3 dimensional space.

3.2. Feature Visualization

When training a Convolutional Neural Network or when
using a trained one, direct diagnosis is limited to discussing
the input images and the output class scores. Everything
happening in between is not as easy to interpret and there-
fore less commonly looked at. One milestone paper in this
area of research came from Zeiler and Fergus [7], in which
they presented some techniques to visualize intermediate
layers and discussed how it could influence our understand-
ing of CNNs, motivating the present discussion.

In order get some insight on how to improve our architec-
ture, we explored two different ways of visualizing what is
happening in the middle layers. The first method uses back-
propagation of the activation of one neuron on the original
image pixels as inspired from Erhan et al. [3]. The sec-
ond method, from Zeiler and Fergus [7], uses a so-called
Deconvolutional Network to reconstruct the pixel map of
the original image that led to the considered activation of a
neuron.

In both cases, we chose neurons from our inception lay-
ers and looked for the 9 images from the validation set that
activated the most one particular neuron with respect to a
specific image norm. We compared both the infinity norm
and the L2 norm to get a quantification of how much a neu-
ron is activated by the input image. For the backpropaga-
tion, the results were visually more insightful when using
the infinity norm compared to the L2 norm. The opposite
was found for the Deconvolution results. We then build a
map of the pixels from the original image related to the ac-
tivation of the neuron using either one of the two methods.
The output had the dimensions of the input images, and the
values were squashed into the RGB range so that we could
visualize it. Some of our results are gathered in annex B.

3.2.1 Backpropagation

In the case of the backpropagation, we computed the gradi-
ents of the activation map of the neuron with respect to the
pixels of the original image. This yielded a quantification of
how sensitive the neuron is to each original pixel. The intu-
ition behind this method is that interesting features present
an important gradient with respect to the activation and that
backpropagation yields the typical pattern that would acti-
vate the neuron.

Figure 7 presents results for a 3 × 3 convolutional layer
from the second inception module. The labels are indicated
as numbers: the ones located on top of the gradient images
are the ones predicted by our network, whereas the ones
located at the bottom of the original images are the true label

4

values. One can see how the neuron seems to be sensitive
to the edges of the objects. Such edge detection neurons are
found to appear rather frequently in the early layers.

One general observation was that when using this
method for a filter from an early layer, the top 9 images
did not as often have the same class labels but shared other
characteristics such as a dominant color in the image. In
contrast, the top 9 images mainly had the same labels for
filters from later layers. Indeed, Figures 9 and 10 feature
activation for blobs of yellow and green colors, whereas
Figures 15 and 16 present a ’flag neuron’ and a ’penguin
neuron’. These considerations agree with our expectations
that the filters learned at later layers should be more com-
plex and more specific to different classes, so that the top
9 images from such a filter predominantly come from one
common class.

Second, qualitative comparisons highlighted how some
neurons do not feature any specific activation pattern. This
could shed some light on how one could improve the archi-
tecture adjusting the number of different layers.

In general, the backpropagation images were not as in-
sightful as we had hoped for as they looked relatively simi-
lar across all visualized filters. Still, it was possible to rec-
ognize characteristic elements from the original images in
the backpropagated visualizations, especially for the earlier
layers.

Figure 7: Visualization of one 3× 3 convolution neuron
from the second inception module (backpropagation)

Figure 8: Visualization of one 5× 5 convolution neuron
from the second inception module (deconvolution)

3.2.2 Deconvolution

The second method for feature visualization relied on the
usage of so-called Deconvolutional Neural Networks. Orig-
inated in [7], Deconvolution refers to building a network
that reverses the operations of the original one in a back-
ward pass. This paper presented highly insightful results
enabling further diagnosis to understand each neuron’s ac-
tion. Due to the irreversible nature of some operations of

the studied CNN, the Deconvolution Network is not a strict
mathematical inverse, but it aims at reconstructing the orig-
inal image from the feature representation at some neuron
in the CNN. This is to say it tries to rebuild the original map
of pixels that led to the specific activation featured, instead
of the map of pixels that are most sensitive to a variation in
the activation, as does backpropagation.

We implemented a Deconvolutional Network according
to the same main guidelines as presented in the paper. In-
version of convolutional layer were performed using con-
volutional layer with transposed weights, ReLU were used
as inverse of ReLU, and unpooling layers of max pooling
layers were built using the forward pass maximum indices.
We removed the batch normalization in the backward pass
as doing so highly improved the quality of our results.

Figure 8 presents results for a 5 × 5 convolutional layer
from the second inception module. The neuron seems to
be sensitive to vertical pole shapes, as occuring on flag or
crane images. The quality of the images is globally im-
proved compared to the backpropagation: the background
is rather uniform, and the activated features appear more
distinctively.

Like for the backpropagation approach, it was confirmed
that early layers were more receptive to simple features,
such as oriented edges (vertical poles on Figure 17, hori-
zontal stripes on Figure 18), whereas deeper layers showed
higher activation for more abstracts concepts (cups for Fig-
ure 23 and cars for Figure 24).

One important observation was that the second and third
inception module visualizations did not enable such clear
qualitative distinctions. One could have expected the ’car’
neuron from Figure 24 to be the result of the activation
of some ’wheel’ and ’windshield’ neurons from these in-
ner layers, but we were not able to highlight such behavior.
However, due to these considerations, it is worth noting that
we also tried a similar architecture with only three inception
modules. We were able to retrieve a similar performance
which suggests that we were not able to train our network
in such a way that a deeper architecture would clearly out-
perform a simpler one. One solution to go further would
have been to use transfer learning and see if we could have
reached better results with our deeper architecture.

4. Conclusion
The original architecture of the GoogleNet was designed

for a 1000 label classification dataset. We inspired our-
selves from this architecture to see how inception modules
scale for a reduced size classification problem with 200 la-
bels. Our architecture involved four successive inception
modules and was trained using a dataset of 198, 179 im-
ages obtained through some data augmentation techniques.
We were able to reduce overfitting using dropout without
loss of performance for a validation accuracy around 45%.

5

Test accuracy was found to be 41.3%. Further improvement
of the generalization and validation accuracy became more
difficult. To better understand the limitations we performed
some visualizations of our trained CNN using methods de-
veloped from the literature. The obtained results were not as
insightful as examples from state-of-the-art papers, but still
provided us with some intuition on what could be improved.
Several considerations from our visualization results made
us wonder whether we were properly training the interme-
diate layers of our deep architecture. One interesting step to
further this study would be to use transfer learning to see if
one could capitalize on a deeper architecture and go beyond
45% validation accuracy.

5. Acknowledgements

The convolutional neural networks were built using the
PyTorch deep learning framework. All computations were
done using the Google Cloud Computing Platform.

A. Architecture details

Type Filter size / stride Output size
convolution 3×3 / 1 62×62×128
max pool 4×4 / 2 30×30×128

inception #1 30×30×128
max pool 2×2 / 2 16×16×128

inception #2 16×16×128
inception #3 16×16×256

max pool 2×2 / 2 8×8×256
inception #4 8×8×256

avg pool 8×8 / 1 1×1×256
fully connected 1×1×200

softmax 1×1×200

Table 1: Baseline CNN architecture

1×1 3×3 red 3×3 5×5 red 5×5 pool

1 32 48 64 8 16 16
2 32 48 64 8 16 16
3 64 96 128 16 32 32
4 64 96 128 16 32 32

Table 2: Baseline inception module filter numbers

Type Filter size / stride Output size
convolution 3×3 / 1 62×62×128
max pool 4×4 / 2 30×30×128

inception #1 30×30×128
max pool 2×2 / 2 16×16×128

inception #2 16×16×128
inception #3 16×16×256

max pool 2×2 / 2 8×8×256
inception #4 8×8×320

avg pool 8×8 / 1 1×1×320
fully connected 1×1×200

softmax 1×1×200

Table 3: Current CNN architecture

1×1 3×3 red 3×3 5×5 red 5×5 pool

1 32 48 64 8 16 16
2 32 48 64 8 16 16
3 64 96 128 16 32 32
4 80 120 160 20 40 40

Table 4: Current inception module filter numbers

B. Visualization Images

In this annex are presented some visualization results
from section 3.2. The labels are indicated as numbers: the
top labels are the ones predicted by the network, whereas
the bottom ones are the actual ones.

B.1. Backpropagation

B.1.1 First Inception Module

Figure 9: 1× 1 convolutional layer

Figure 10: Pool layer

6

B.1.2 Second Inception Module

Figure 11: 3× 3 convolutional layer

Figure 12: 3× 3 convolutional layer

B.1.3 Third Inception Module

Figure 13: 3× 3 convolutional layer

Figure 14: Pool layer

B.1.4 Fourth Inception Module

Figure 15: 3× 3 convolutional layer

Figure 16: 3× 3 convolutional layer

B.2. Deconvolution

B.2.1 First Inception Module

Figure 17: 5× 5 convolutional layer

Figure 18: 1× 1 convolutional layer

B.2.2 Second Inception Module

Figure 19: 3× 3 convolutional layer

Figure 20: 3× 3 convolutional layer

B.2.3 Third Inception Module

Figure 21: 3× 3 convolutional layer

Figure 22: 3× 3 convolutional layer

7

B.2.4 Fourth Inception Module

Figure 23: 3× 3 convolutional layer

Figure 24: 5× 5 convolutional layer

References
[1] ImageNet website. http://www.image-net.org/.

Accessed: 2017-05-16.
[2] Pytorch googlenet implementation. https:

//github.com/pytorch/vision/tree/master/
torchvision/models. Accessed: 2017-05-16.

[3] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualiz-
ing higher-layer features of a deep network. Technical Report
1341, University of Montreal, June 2009.

[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015.

[5] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[7] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. CoRR, abs/1311.2901, 2013.

8

http://www.image-net.org/
 https://github.com/pytorch/vision/tree/master/torchvision/models
 https://github.com/pytorch/vision/tree/master/torchvision/models
 https://github.com/pytorch/vision/tree/master/torchvision/models

