
Visual Classifier for Invasive Plant Species

 Elliott Jobson Andres Hernandez
 Stanford University Stanford University
 emjobson@stanford.edu andresh@stanford.edu

Abstract

Invasive species monitoring by trained scientists

can be a slow, costly process in terms of hired, skilled
labor. In this project, we aim to examine effective ways to
take on the provided Kaggle challenge of identifying
hydrangea plants in images of forest. Herein, we evaluate
and compare the performance of a VGG-16 CNN
architecture, pre-trained on on the ImageNet dataset and
subsequently trained on various augmented versions of the
limited dataset provided; we describe our path to finding
an ideal set of parameters and architectures for these
models.

1. Introduction

Invasive plant species have several negative

ecological impacts; they often compete for the same
nutrients as the native species and can also be toxic to the
local fauna. Invasive species cost an estimated 33 billion
dollars per year and are “the second-greatest threat” to
endangered wildlife after habitat destruction [1]. We chose
to examine this problem because of its ecological,
cross-industry impact as well as its reliance on a limited
training dataset.

The ability to use smaller datasets to train a neural
network particularly impacts situations where examples of
the intended input are scarce or the collection of data is
costly. By augmenting a training dataset in a targeted way,
computer scientists can reduce the required time and cost
to create tools for environmental scientists. Furthermore,
data augmentation by adding noise can often have the
impact of creating a model that is more robust to
variations in orientation, lighting, and occlusion [2].

The input of our predictive model is a 3-channel
color image of plants on forest floors. Our model uses
transfer learning based on a VGG-16 Convolutional
Neural Network then yields a probability that the foliage
in the provided image contains hydrangea within.

Figure 1: A training image with hydrangea flowers.

2. Background and Related Work

Due to the scientific and social value of automated
plant classification, the topic has already been
well-explored. In the past, plant classification often relied
upon traditional computer vision techniques used to make
predictions on extracted features such as shape, color, or
texture. However, with the recent success of CNNs in
image classification, new plant classification methods
have shifted toward a deep learning based approach [3].

The shift toward a deep learning based approach has
marked an increase in the generalizability of classification
methods – while feature extraction and engineering has
often required domain-specific knowledge, such as
markers for specific plant diseases, deep learning has
shifted the burden of deciding which features to extract to
the model [18].

Here, we will briefly review a few traditional
methods used in plant classification, then cover a variety
of deep learning approaches.

A few techniques have achieved high levels of
success using traditional computer vision methods. For
example, by using a histogram of oriented gradients to
extract shape features from the image, Patil and Bodhe
have classified plant diseases with 98.6% test accuracy
[3]. However, this method requires clean images of the
plants. Additionally, other teams have used features based
on color and texture to recognize diseases on leaves [4, 5].

1

Once again, these methods often require clean

images of the leaves, limiting the usefulness of the
classifiers.

With enough data, convolutional neural networks
offer hope in improving the generalizability of these
classifiers. As we will discuss later, other CNN-based
plant classification methods have faced similar problems
that we faced in our project, including limitations on the
volume and variety of training data.

A group led by Mohanty, Hughes, and Salathé
sought to develop an accurate plant and disease classifier
based on a large amount of training data and a transfer
learning based approach [6]. While they were able to reach
99.35% test accuracy (without feature engineering) by
repurposing AlexNet to their task, they report that their
model’s accuracy is reduced to 31.4% when applied to
images taken under conditions different than that of the
training data. Thus, in our own efforts, we hope to apply
data augmentation such that our model will generalize
well [2, 8]. Finally, the group reports that their model is
limited to classifying single leaves facing upwards. Once
again, they hope to make their model more generalizable
by varying the training data to reflect more realistic image
conditions. Ultimately, both these limitations point out
that despite CNNs’ relative success, challenges remain in
training models that generalize well, especially based on
data limitations.

Next, we explore the importance of applying transfer
learning to our problem. According to Francois Chollet,
transfer learning allows for the creation of powerful
classifiers based on limited training data [2, 9, 13]. Since
deep CNNs such as AlexNet or VGG16 have already been
trained to extract increasingly-high level or abstract
features as input data traverses the model, one can adapt
such models for new tasks by training a few
fully-connected layers at the end of the transferred model
[10]. Moreover, VGG16 has been trained on similar data
with the ImageNet dataset, as ImageNet contains many
natural images.

Additionally, the Chollet suggests methods to avoid
overfitting the model to a small dataset – in addition to
regularization and data augmentation, one can limit the
entropic capacity of a model by limiting the size of the
model [9]. This reduces the number of features that the
model can learn, forcing it to learn features more relevant
to the task.

3. Methods

In this section, we will cover the algorithms that our
various models utilize. First, we will briefly cover basic
activation and loss functions, as well as the layers we
used. Afterwards, we will explain the intuition behind
transfer learning, as well as explain the importance of data
augmentation as it relates to our task.

For all of our models, we use binary cross-entropy
loss. This is simply a specific case of cross-entropy loss, in
which we are classifying between only two categories.
Given by the following equation, one can intuitively think
of cross-entropy loss as a measure of distance between the
truth, y, and a model’s prediction, ŷ:

 [11]
It is important to note that the prediction value, ŷ, must
come from a normalized distribution of probability
“scores.”

Next, since our problem is binary classification, we
used the sigmoid activation function to transform raw
probability “scores” into our normalized probability
distribution. As the output of our final layer was simply
one number for each sample, the probability represents the
likelihood that the species is invasive. Since the sigmoid
activation function is an element-wise map of inputs to
(0,1), it is well-suited for creating our probability
distribution [11].

Figure 2: Our loss function of choice.

Before delving into our use of transfer learning and

data augmentation, we will briefly cover a few basic tools
used in all of our models. Due to its effectiveness in
computer vision tasks and ability to speed the convergence

2

of Stochastic Gradient Descent (SGD), we used the ReLU
activation function throughout our models:

f(x) = max(0, x) [12]

In addition to its other benefits, the ReLU operation is
cheap to compute, which helps with training large models
on a lot of data [14].

Next, we used convolutional layers as the backbone
of all of our models. At a high level, the convolutional
layers involve sliding a filter across an image, computing
the dot product at each location. The filters learn to
activate (i.e. output a higher dot product) for certain image
features – filters closer to the input of the network learn
low-level features, while filters toward the end of the
network learn more abstract, high-level features [15].
Since the convolutional filters may reduce the output size,
we often use zero-padding to control the size of the output
volumes.

Between our convolutional layers, we insert a
number of max-pooling layers. This reduces the size of the
layers’ outputs, helping to prevent overfitting [15].

After our initial output layers, we flatten the filter
outputs and apply a number of fully-connected layers to
transform the convolutional output into our raw
probability scores (which are then passed to the sigmoid
activation and cross-entropy loss function). The
fully-connected layers consist of alternating affine
transformations (h = Ax + b) and nonlinear functions
(which allow for nonlinear data separation).

Now that we have covered the building blocks of our
models, we will cover their general structure:

Model Structure Training Epochs

baseline 6 conv layers, with
zero-padding and
max-pooling.
Followed by 2 FC
layers.

20

no_aug 2 FC layers trained
on top of VGG16,
without data
augmentation.

40

no_aug_
exp1

2 FC layers (with
more trainable

45

parameters than in
no_aug), trained
on top of VGG16,
without data
augmentation.

no_aug_
exp2

2 FC layers (with
more trainable
parameters than in
no_aug_exp1),
trained on top of
VGG16, without
data augmentation.

50

no_aug_
exp3

3 FC layers trained
on top of VGG16,
without data
augmentation.

60

min_aug 2 FC layers trained
on top of VGG16,
with data
augmentation
(random horizontal
and vertical
translations,
horizontal
reflections, and
rotations between
0° and 30°).

40

contrast_
aug

Same as min_aug,
but added random
contrast
adjustments to a
random 20% of the
inputs.

40

contrast_
aug_exp

Same as
contrast_aug, but
with more
trainable
parameters in the
final 2 FC layers.

45

Finally, it is clear that most of our models relied on

transfer learning to achieve high performance on a small
dataset. As we will explain in the evaluation section, most
of our models achieved an AUC score of around .95,
indicating that our model was able to effectively and
accurately separate its distribution of outputs. However,

3

the baseline model did not come anywhere close to
reaching this level of performance, largely because it
trained its weights from scratch.

As implied by the name, transfer learning allows us
to apply information learned by one model to another task.
More specifically, one may use pre-trained deep
convolutional models, such as VGG16 or AlexNet, to
extract a range of feature-rich representations from the
input data [16]. From there, one may train a few layers
(often fully-connected layers) on top of the pre-trained
model to determine which features are relevant to the task.
Using this method, it is possible to build a classifier using
limited training data.

In addition, we initially found it important to apply
data augmentation to our dataset. Data augmentation
consists of applying transformations to our training set, in
order to increase the dataset size and variation. Although
we reached a high-performance model without data
augmentation, data augmentation has proven successful
for image classification (especially when using a small
dataset). By increasing the size of our dataset, data
augmentation helps prevent overfitting. However, it is not
fool-proof, since the augmented images will be
highly-correlated. Our method of data augmentation
consists of warping images in the data-space, rather than
the feature-space [17]. In other words, our augmentations
maintain label-data, rather than using other methods that
artificially over-sample certain features. We hoped that
adding random vertical and horizontal translations would
remove the tendency of flowers to be located in the middle
of the image. Moreover, based on a qualitative
examination of our early models’ errors, we realized that
areas of high contrast may have led to false-positive
classifications. Therefore, we later experiment with
random contrast adjustments during training.

For our parameter updates, we settled upon using
SGD with momentum and a small learning rate for
gradient descent:

[19].
When using transfer learning, it is important to avoid

large updates on the pre-trained weights. Therefore, it is
often necessary to “freeze” the updates of the pre-trained
layers while training the final network layers, then
fine-tune the entire model with small updates. Stochastic

gradient descent with a small learning rate works well for
fine-tuning, since it avoids large weight updates
(compared to adaptive learning algorithms). For this
reason, we train our models using SGD and a low learning
rate.
4. Datasets and Features

We obtained our dataset from a Kaggle challenge
[20]. It consists of 2294 labeled images, along with 1351
unlabeled images to be used for testing. We split the
dataset into 2000 images to use for training and 294 for
validation. Because we are using such a small validation
set, we noticed a lot of noise in the graphs for validation
accuracy and loss. In the training dataset, 63% of the
images contained the invasive species.

Since the images were 1154 by 866 pixels, and
because VGG16 requires 224 by 224 pixel 3-channel
images, we resized all images to those specifications
during preprocessing. An interesting feature of the dataset,
which presented problems during training, was that the
majority of images with hydrangeas in them had the
flowers centered in the middle of the image. Similar to the
problem faced by Mohanty et. al. [5], the general
homogeneity of our dataset reduces the classification
accuracy on images taken under different conditions. For
example, since most of our images are taken with the
flowers centered and with no patches of sunlight in the
background, the model often fails to classify images that
deviate from this pattern.

Figure 3: Typical “Invasive” Image

As we will discuss later, we applied data

augmentation to increase the number of images that our
models see, along with address some of the issues
mentioned above.

4

Figure 5: The above chart describes the AUC values received for different augmentation schemes.

5. Experiment

Figure 4: Four plots describing the appearance of an AUC
curve and its interpretation in each case. The x-axis

denotes the False Positive Rate. The y-axis denotes the
True Positive Rate

The primary metric for determining the success of

our model is the Area Under the Receiver Operating
Characteristic curve, abbreviated “AUROC,” and often
shortened to “AUC” curve. In the context of our binary
classification problem, the most clear interpretation of the
AUC curve is a graph that describes the threshold for
correct classification of an input image. The AUC
considers all possible thresholds, and we use 0.5, meaning

that the prediction values are true probabilities. As the
threshold decreases, results will likely correctly classify all
of the images that contain hydrangeas, however there will
also be an increasing amount of false positives, or images
without hydrangeas classified as having them. The
opposite, more false negatives, will occur as the the
threshold increases. For example, in Figure 5, we can see
that an AUC curve with a value of 0.95 (i.e. 95% of the
graph’s area is under the ROC curve) would look
approximately like the graph labeled “good separation.”

Because of the structure of the Kaggle challenge
competition and to prevent cheating, we are not provided
the test label data, and so we are unable to compute a
confusion matrix or graph the AUC curve from our results.

Figure 6: min_aug: 50.1% | aug_contrast: 49.7%

By examining the images that were incorrectly

classified we can evaluate the different properties that our
model “seeks” and emphasizes in its search for hydrangea
flowers. For example, Figure 6 was classified by the

5

min_aug model as containing hydrangea flowers with
probability 50.1%. It is likely that the model correlates the
juxtaposition of green and white pixels with the presence
of the hydrangea flower, in this case, either the sign or
even possibly the patches of sky visible behind the trees. It
is possible Figure 7 is also an example of the same
behavior; we see several leaves reflecting sunlight in the
foreground, in stark contrast to the surrounding green
foliage.

Figure 7: min_aug: 55% | aug_contrast: 51.4%

Figure 8: Training and Validation Loss for no_aug_exp3

These incorrect classifications are examples of why we
felt that augmenting our training dataset with
contrast-reduced samples would aid our prediction
accuracy. We hypothesized that if the new model learned
to place less emphasis on contrast, the false positives
described above would be correctly classified. While the
AUC only increased by a few thousandths, we saw that in
edge cases like these, our contrast augmentation scheme
was enough to push samples like in Figure 6 over the
fence to being correctly classified. We also saw a

reduction in probability of the incorrectly classified image
in Figure 7, showing that the model is 4% less certain that
the image in question contains hydrangeas.

In most of our models we found that the training and
validation loss and accuracy tracked each other relatively
well. This means that we should expand the entropic
capacity of the model by increasing the number of
trainable parameters. In other words, since the model
performed nearly as well on the unseen

Figure 9: Training and Validation Accuracy for
no_aug_exp3

validation data as it did on the training data, we observed
that we could increase the number of trainable parameters
in the model, allowing it to learn more specific features.
To an extent, this was supported by our AUC values and
accuracy statistics for the no_aug_exp1 and no_aug_exp2
models. Furthermore, we felt that by expanding the model
we would also need to increase the number of training
epochs. We stopped increasing the number of parameters
in the model when we saw separation between the training
and validation statistics but a reduced AUC value-- likely
an overfit [7]. The batch size of 32 was relatively
appropriate given the amount of noise visible in the loss
and accuracy graphs for models. We also noticed that
more noise was present in the graphs of the augmented
datasets, likely because with each training epoch the
model was seeing new images.

In the Methods section, we justify our use of
SGD with a small learning rate (10-4). Additionally, we
can see in our loss graphs that the learning rate was
appropriate for the model.

6

Figure 10: Training Loss for no_aug (left). Training loss

for min_aug (right)

6. Conclusion

Overall, our highest-performing models tended to
be the ones with more trainable parameters, since we
started our experiments with a relatively modest number
of trainable parameters in the final fully-connected layers.
Though we observed that adding contrast adjustments
improved the models that used data augmentation, our
models without data augmentation actually outperformed
our models with data augmentation. We hypothesize that
the extra noise that the data-augmented models faced
during training caused the final parameters of the
data-augmented models to be sub-par. To address this
going forward, we would increase the batch size for these
models, as well as save the weights at every epoch.

Looking ahead, it is possible that increasing the
probability of contrast augmentation from 1 in 5 would
further decrease classification error based on localized,
adjacent brightness disparity. However, future experiments
with contrast-related data augmentation would have to
take care to avoid adding so many contrast reduced images
that the model no longer uses any contrast information to
make a prediction.

We have considered a number of other possible
extensions and paths of experimentation that we would
have liked to explore, given more time. For example, a fair
amount of information is lost simply by reducing the
image resolution during preprocessing. This may have
been particularly harmful in cases where the flowers
occupied a small part of the image – images for which the
model often failed. Though it would make it impossible to
use transfer learning with VGG16 due to the new input
size, it would be interesting to explore the use of a model
that accepts higher resolution images.

As another way of addressing the misclassification
of images with small, off-center flowers, we would like to

explore the use of a sliding window classifier that
considers the image at various locations. Alternatively,
since the training images are of high resolution before
preprocessing, we could have divided the images into
large quadrants, running the test images on those. Though
we would have to do extensive hyperparameter tuning to
relate the outputs of the classifier at different locations to
the overall classification, we believe that this method
would effectively address our current models’ weakness in
classifying images with small flowers. Finally, given more
time, we would like to explore test-time data augmentation
– given a test image, we would collect a weighted vote on
classifications of various transformations of the image.
Once again, this may help solve the misclassification
issues mentioned previously.

References

[1] The Impact of Invasive Plants. The California Invasive Plant

Council. http://www.cal-ipc.org/ip/definitions/impact.php
[2] Lee, Fei Fei. Johnson, Justin. Yeung, Serena. CS231N

Lecture 7: Training Neural Networks. Stanford University.
2017.

[3] Wäldchen, Jana. Mäder, Patrick. Plant Species
Identification Using Computer Vision Techniques: A
Systematic Literature Review. Arch Computat Methods Eng
DOI 10.1007/s11831-016-9206-z. 24 November 2016.

[4] S. B. Patil and S. K. Bodhe. Leaf disease severity
measurement using image processing. International Journal
of Engineering and Technology, 2011.

[5] P. Chaudhary, A. K. Chaudhary, A. N. Cheeran, and S.
Godara. Color transform based approach for disease spot
detection on plant leaf. International Journal of Computer
Science and Telecommunications, 2012.

[6] J. K. Patil and R. Kumar. Feature extraction of diseased leaf
images. Journal of Signal and Image Processing, 2012.

[7] Sharada Prasanna Mohanty, David Hughes, and Marcel
Salathé. Using Deep Learning for Image-Based Plant
Disease Detection. Digital Epidemiology Lab, EPFL,
Switzerland, 2016.

[8] Wong, Sebastien C. Gatt, Adam. Stamatescu, Victor.
McDonnel, Mark D. Understanding data augmentation for
classification: when to warp?. Arxiv:1609.08764. 26
November 2016.

[9] Francois Chollet. Building powerful image classification
models using very little data. The Keras Blog, 2016.

[10] Lee, Fei Fei. Johnson, Justin. Yeung, Serena. Course Notes
3. CS231N, 2017.

[11] Christopher Manning and Richard Socher. Course Notes 1.
CS224N, 2017.

7

[12] Krizhevsky, Sutskever, and Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. University of
Toronto, 2012.

[13] Martin, Glen. Stanford researchers use dark of night and
machine learning to shed light on global poverty. Stanford
News. 24 February 2016.

[14] Lee, Fei Fei. Johnson, Justin. Yeung, Serena. Neural
Networks 1. CS231N, 2017.

[15] Lee, Fei Fei. Johnson, Justin. Yeung, Serena. Convolutional
Neural Networks. CS231N, 2017.

[16] Ariadna Quattoni. Transfer Learning Algorithms for Image
Classification. MIT Department of Electrical Engineering
and Computer Science, 2009.

[17] Sebastien Wong, Adam Gatt, Victor Stamatescu, and Mark
McDonnell. Understanding data augmentation for
classification: when to warp?. DICTA 2016.

[18] Seeland M, Rzanny M, Alaqraa N, Wäldchen J, Mäder P
(2017) Plant species classification using flower images—A
comparative study of local feature representations. PLoS
ONE 12(2): e0170629.
https://doi.org/10.1371/journal.pone.0170629

[19] Sebastian Ruder. An overview of gradient descent
optimization algorithms, 2016.

[20] https://www.kaggle.com/c/invasive-species-monitorin
g

[21] Fujisan. use Keras pre-trained VGG16 acc 98%.
https://www.kaggle.com/fujisan/use-keras-pre-trained-vgg1
6-acc-98

8

