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Abstract 

 
Invasive species monitoring by trained scientists      

can be a slow, costly process in terms of hired, skilled           
labor. In this project, we aim to examine effective ways to           
take on the provided Kaggle challenge of identifying        
hydrangea plants in images of forest. Herein, we evaluate         
and compare the performance of a VGG-16 CNN        
architecture, pre-trained on on the ImageNet dataset and        
subsequently trained on various augmented versions of the        
limited dataset provided; we describe our path to finding         
an ideal set of parameters and architectures for these         
models. 

1. Introduction 

 
Invasive plant species have several negative 

ecological impacts; they often compete for the same 
nutrients as the native species and can also be toxic to the 
local fauna. Invasive species cost an estimated 33 billion 
dollars per year and are “the second-greatest threat” to 
endangered wildlife after habitat destruction [1]. We chose 
to examine this problem because of its ecological, 
cross-industry impact as well as its reliance on a limited 
training dataset. 

The ability to use smaller datasets to train a neural 
network particularly impacts situations where examples of 
the intended input are scarce or the collection of data is 
costly. By augmenting a training dataset in a targeted way, 
computer scientists can reduce the required time and cost 
to create tools for environmental scientists. Furthermore, 
data augmentation by adding noise can often have the 
impact of creating a model that is more robust to 
variations in orientation, lighting, and occlusion [2].  

The input of our predictive model is a 3-channel 
color image of plants on forest floors. Our model uses 
transfer learning based on a VGG-16 Convolutional 
Neural Network then yields a probability that the foliage 
in the provided image contains hydrangea within. 

 

 
Figure 1: A training image with hydrangea flowers. 

2. Background and Related Work 
 

Due to the scientific and social value of automated 
plant classification, the topic has already been 
well-explored. In the past, plant classification often relied 
upon traditional computer vision techniques used to make 
predictions on extracted features such as shape, color, or 
texture. However, with the recent success of CNNs in 
image classification, new plant classification methods 
have shifted toward a deep learning based approach [3].  

The shift toward a deep learning based approach has 
marked an increase in the generalizability of classification 
methods – while feature extraction and engineering has 
often required domain-specific knowledge, such as 
markers for specific plant diseases, deep learning has 
shifted the burden of deciding which features to extract to 
the model [18].  

Here, we will briefly review a few traditional 
methods used in plant classification, then cover a variety 
of deep learning approaches. 

A few techniques have achieved high levels of 
success using traditional computer vision methods. For 
example, by using a histogram of oriented gradients to 
extract shape features from the image, Patil and Bodhe 
have classified plant diseases with 98.6% test accuracy 
[3]. However, this method requires clean images of the 
plants. Additionally, other teams have used features based 
on color and texture to recognize diseases on leaves [4, 5].  
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Once again, these methods often require clean 

images of the leaves, limiting the usefulness of the 
classifiers. 

With enough data, convolutional neural networks 
offer hope in improving the generalizability of these 
classifiers. As we will discuss later, other CNN-based 
plant classification methods have faced similar problems 
that we faced in our project, including limitations on the 
volume and variety of training data.  

A group led by Mohanty, Hughes, and Salathé 
sought to develop an accurate plant and disease classifier 
based on a large amount of training data and a transfer 
learning based approach [6]. While they were able to reach 
99.35%  test accuracy (without feature engineering) by 
repurposing AlexNet to their task, they report that their 
model’s accuracy is reduced to 31.4% when applied to 
images taken under conditions different than that of the 
training data. Thus, in our own efforts, we hope to apply 
data augmentation such that our model will generalize 
well [2, 8]. Finally, the group reports that their model is 
limited to classifying single leaves facing upwards. Once 
again, they hope to make their model more generalizable 
by varying the training data to reflect more realistic image 
conditions. Ultimately, both these limitations point out 
that despite CNNs’ relative success, challenges remain in 
training models that generalize well, especially based on 
data limitations. 

Next, we explore the importance of applying transfer 
learning to our problem. According to Francois Chollet, 
transfer learning allows for the creation of powerful 
classifiers based on limited training data [2, 9, 13]. Since 
deep CNNs such as AlexNet or VGG16 have already been 
trained to extract increasingly-high level or abstract 
features as input data traverses the model, one can adapt 
such models for new tasks by training a few 
fully-connected layers at the end of the transferred model 
[10]. Moreover, VGG16 has been trained on similar data 
with the ImageNet dataset, as ImageNet contains many 
natural images. 

Additionally, the Chollet suggests methods to avoid 
overfitting the model to a small dataset – in addition to 
regularization and data augmentation, one can limit the 
entropic capacity of a model by limiting the size of the 
model [9]. This reduces the number of features that the 
model can learn, forcing it to learn features more relevant 
to the task. 

 
3.    Methods 

In this section, we will cover the algorithms that our 
various models utilize. First, we will briefly cover basic 
activation and loss functions, as well as the layers we 
used. Afterwards, we will explain the intuition behind 
transfer learning, as well as explain the importance of data 
augmentation as it relates to our task. 

For all of our models, we use binary cross-entropy 
loss. This is simply a specific case of cross-entropy loss, in 
which we are classifying between only two categories. 
Given by the following equation, one can intuitively think 
of cross-entropy loss as a measure of distance between the 
truth, y, and a model’s prediction, ŷ:  

 [11] 
It is important to note that the prediction value, ŷ, must 
come from a normalized distribution of probability 
“scores.” 

Next, since our problem is binary classification, we 
used the sigmoid activation function to transform raw 
probability “scores” into our normalized probability 
distribution. As the output of our final layer was simply 
one number for each sample, the probability represents the 
likelihood that the species is invasive. Since the sigmoid 
activation function is an element-wise map of inputs to 
(0,1), it is well-suited for creating our probability 
distribution [11].  

 
Figure 2: Our loss function of choice.  

 
Before delving into our use of transfer learning and 

data augmentation, we will briefly cover a few basic tools 
used in all of our models. Due to its effectiveness in 
computer vision tasks and ability to speed the convergence 
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of Stochastic Gradient Descent (SGD), we used the ReLU 
activation function throughout our models:  
 

f(x) = max(0, x)         [12]  
 
In addition to its other benefits, the ReLU operation is 
cheap to compute, which helps with training large models 
on a lot of data [14].  

Next, we used convolutional layers as the backbone 
of all of our models. At a high level, the convolutional 
layers involve sliding a filter across an image, computing 
the dot product at each location. The filters learn to 
activate (i.e. output a higher dot product) for certain image 
features – filters closer to the input of the network learn 
low-level features, while filters toward the end of the 
network learn more abstract, high-level features [15]. 
Since the convolutional filters may reduce the output size, 
we often use zero-padding to control the size of the output 
volumes.  

Between our convolutional layers, we insert a 
number of max-pooling layers. This reduces the size of the 
layers’ outputs, helping to prevent overfitting [15]. 

After our initial output layers, we flatten the filter 
outputs and apply a number of fully-connected layers to 
transform the convolutional output into our raw 
probability scores (which are then passed to the sigmoid 
activation and cross-entropy loss function). The 
fully-connected layers consist of alternating affine 
transformations (h = Ax + b) and nonlinear functions 
(which allow for nonlinear data separation).  

Now that we have covered the building blocks of our 
models, we will cover their general structure: 
 

Model Structure Training Epochs 

baseline 6 conv layers, with 
zero-padding and 
max-pooling. 
Followed by 2 FC 
layers. 

20 

no_aug 2 FC layers trained 
on top of VGG16, 
without data 
augmentation. 

40 

no_aug_
exp1 

2 FC layers (with 
more trainable 

45 

parameters than in 
no_aug), trained 
on top of VGG16, 
without data 
augmentation. 

no_aug_
exp2 

2 FC layers (with 
more trainable 
parameters than in 
no_aug_exp1), 
trained on top of 
VGG16, without 
data augmentation. 

50 

no_aug_
exp3 

3 FC layers trained 
on top of VGG16, 
without data 
augmentation. 

60 

min_aug 2 FC layers trained 
on top of VGG16, 
with data 
augmentation 
(random horizontal 
and vertical 
translations, 
horizontal 
reflections, and 
rotations between 
0° and 30°). 

40 

contrast_
aug 

Same as min_aug, 
but added random 
contrast 
adjustments to a 
random 20% of the 
inputs. 

40 

contrast_
aug_exp 

Same as 
contrast_aug, but 
with more 
trainable 
parameters in the 
final 2 FC layers. 

45 

 
Finally, it is clear that most of our models relied on 

transfer learning to achieve high performance on a small 
dataset. As we will explain in the evaluation section, most 
of our models achieved an AUC score of around .95, 
indicating that our model was able to effectively and 
accurately separate its distribution of outputs. However, 
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the baseline model did not come anywhere close to 
reaching this level of performance, largely because it 
trained its weights from scratch. 
 

As implied by the name, transfer learning allows us 
to apply information learned by one model to another task. 
More specifically, one may use pre-trained deep 
convolutional models, such as VGG16 or AlexNet, to 
extract a range of feature-rich representations from the 
input data [16]. From there, one may train a few layers 
(often fully-connected layers) on top of the pre-trained 
model to determine which features are relevant to the task. 
Using this method, it is possible to build a classifier using 
limited training data.  

In addition, we initially found it important to apply 
data augmentation to our dataset. Data augmentation 
consists of applying transformations to our training set, in 
order to increase the dataset size and variation. Although 
we reached a high-performance model without data 
augmentation, data augmentation has proven successful 
for image classification (especially when using a small 
dataset). By increasing the size of our dataset, data 
augmentation helps prevent overfitting. However, it is not 
fool-proof, since the augmented images will be 
highly-correlated. Our method of data augmentation 
consists of warping images in the data-space, rather than 
the feature-space [17]. In other words, our augmentations 
maintain label-data, rather than using other methods that 
artificially over-sample certain features. We hoped that 
adding random vertical and horizontal translations would 
remove the tendency of flowers to be located in the middle 
of the image. Moreover, based on a qualitative 
examination of our early models’ errors, we realized that 
areas of high contrast may have led to false-positive 
classifications. Therefore, we later experiment with 
random contrast adjustments during training. 

For our parameter updates, we settled upon using 
SGD with momentum and a small learning rate for 
gradient descent: 

[19]. 
When using transfer learning, it is important to avoid 

large updates on the pre-trained weights. Therefore, it is 
often necessary to “freeze” the updates of the pre-trained 
layers while training the final network layers, then 
fine-tune the entire model with small updates. Stochastic 

gradient descent with a small learning rate works well for 
fine-tuning, since it avoids large weight updates 
(compared to adaptive learning algorithms). For this 
reason, we train our models using SGD and a low learning 
rate. 
4.    Datasets and Features 
 

We obtained our dataset from a Kaggle challenge 
[20]. It consists of 2294 labeled images, along with 1351 
unlabeled images to be used for testing. We split the 
dataset into 2000 images to use for training and 294 for 
validation. Because we are using such a small validation 
set, we noticed a lot of noise in the graphs for validation 
accuracy and loss.  In the training dataset, 63% of the 
images contained the invasive species. 

Since the images were 1154 by 866 pixels, and 
because VGG16 requires 224 by 224 pixel 3-channel 
images, we resized all images to those specifications 
during preprocessing. An interesting feature of the dataset, 
which presented problems during training, was that the 
majority of images with hydrangeas in them had the 
flowers centered in the middle of the image. Similar to the 
problem faced by Mohanty et. al. [5], the general 
homogeneity of our dataset reduces the classification 
accuracy on images taken under different conditions. For 
example, since most of our images are taken with the 
flowers centered and with no patches of sunlight in the 
background, the model often fails to classify images that 
deviate from this pattern.  
 

 
Figure 3: Typical “Invasive” Image 

 
As we will discuss later, we applied data 

augmentation to increase the number of images that our 
models see, along with address some of the issues 
mentioned above.  
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Figure 5: The above chart describes the AUC values received for different augmentation schemes. 

 
5.    Experiment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Four plots describing the appearance of an AUC 
curve and its interpretation in each case. The x-axis 

denotes the False Positive Rate. The y-axis denotes the 
True Positive Rate 

 
The primary metric for determining the success of 

our model is the Area Under the Receiver Operating 
Characteristic curve, abbreviated “AUROC,” and often 
shortened to “AUC” curve. In the context of our binary 
classification problem, the most clear interpretation of the 
AUC curve is a graph that describes the threshold for 
correct classification of an input image. The AUC 
considers all possible thresholds, and we use 0.5, meaning 

that the prediction values are true probabilities. As the 
threshold decreases, results will likely correctly classify all 
of the images that contain hydrangeas, however there will 
also be an increasing amount of false positives, or images 
without hydrangeas classified as having them. The 
opposite, more false negatives, will occur as the the 
threshold increases. For example, in Figure 5, we can see 
that an AUC curve with a value of 0.95 (i.e. 95% of the 
graph’s area is under the ROC curve) would look 
approximately like the graph labeled “good separation.” 

Because of the structure of the Kaggle challenge 
competition and to prevent cheating, we are not provided 
the test label data, and so we are unable to compute a 
confusion matrix or graph the AUC curve from our results. 

 
Figure 6: min_aug: 50.1% | aug_contrast: 49.7% 

 
By examining the images that were incorrectly 

classified we can evaluate the different properties that our 
model “seeks” and emphasizes in its search for hydrangea 
flowers. For example, Figure 6 was classified by the 
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min_aug model as containing hydrangea flowers with 
probability 50.1%. It is likely that the model correlates the 
juxtaposition of green and white pixels with the presence 
of the hydrangea flower, in this case, either the sign or 
even possibly the patches of sky visible behind the trees. It 
is possible Figure 7 is also an example of the same 
behavior; we see several leaves reflecting sunlight in the 
foreground, in stark contrast to the surrounding green 
foliage. 

 

 
Figure 7: min_aug: 55% | aug_contrast: 51.4% 

Figure 8: Training and Validation Loss for no_aug_exp3  
 
These incorrect classifications are examples of why we  
felt that augmenting our training dataset with 
contrast-reduced samples would aid our prediction 
accuracy. We hypothesized that if the new model learned 
to place less emphasis on contrast, the false positives 
described above would be correctly classified. While the 
AUC only increased by a few thousandths, we saw that in 
edge cases like these, our contrast augmentation scheme 
was enough to push samples like in Figure 6 over the 
fence to being correctly classified. We also saw a 

reduction in probability of the incorrectly classified image 
in Figure 7, showing that the model is 4% less certain that 
the image in question contains hydrangeas.  

In most of our models we found that the training and 
validation loss and accuracy tracked each other relatively 
well. This means that we should expand the entropic 
capacity of the model by increasing the number of 
trainable parameters. In other words, since the model 
performed nearly as well on the unseen  

Figure 9: Training and Validation Accuracy for 
no_aug_exp3 

 
validation data as it did on the training data, we observed 
that we could increase the number of trainable parameters 
in the model, allowing it to learn more specific features. 
To an extent, this was supported by our AUC values and 
accuracy statistics for the no_aug_exp1 and no_aug_exp2 
models. Furthermore, we felt that by expanding the model 
we would also need to increase the number of training 
epochs. We stopped increasing the number of parameters 
in the model when we saw separation between the training 
and validation statistics but a reduced AUC value-- likely 
an overfit [7]. The batch size of 32 was relatively 
appropriate given the amount of noise visible in the loss 
and accuracy graphs for models. We also noticed that 
more noise was present in the graphs of the augmented 
datasets, likely because with each training epoch the 
model was seeing new images. 

In the Methods section, we justify our use of 
SGD with a small learning rate (10-4). Additionally, we 
can see in our loss graphs that the learning rate was 
appropriate for the model. 
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Figure 10: Training Loss for no_aug (left). Training loss 

for min_aug (right) 
 
6.    Conclusion 
 

Overall, our highest-performing models tended to 
be the ones with more trainable parameters, since we 
started our experiments with a relatively modest number 
of trainable parameters in the final fully-connected layers. 
Though we observed that adding contrast adjustments 
improved the models that used data augmentation, our 
models without data augmentation actually outperformed 
our models with data augmentation. We hypothesize that 
the extra noise that the data-augmented models faced 
during training caused the final parameters of the 
data-augmented models to be sub-par. To address this 
going forward, we would increase the batch size for these 
models, as well as save the weights at every epoch. 

Looking ahead, it is possible that increasing the 
probability of contrast augmentation from 1 in 5 would 
further decrease classification error based on localized, 
adjacent brightness disparity. However, future experiments 
with contrast-related data augmentation would have to 
take care to avoid adding so many contrast reduced images 
that the model no longer uses any contrast information to 
make a prediction. 

We have considered a number of other possible 
extensions and paths of experimentation that we would 
have liked to explore, given more time. For example, a fair 
amount of information is lost simply by reducing the 
image resolution during preprocessing. This may have 
been particularly harmful in cases where the flowers 
occupied a small part of the image – images for which the 
model often failed. Though it would make it impossible to 
use transfer learning with VGG16 due to the new input 
size, it would be interesting to explore the use of a model 
that accepts higher resolution images. 

As another way of addressing the misclassification 
of images with small, off-center flowers, we would like to 

explore the use of a sliding window classifier that 
considers the image at various locations. Alternatively, 
since the training images are of high resolution before 
preprocessing, we could have divided the images into 
large quadrants, running the test images on those. Though 
we would have to do extensive hyperparameter tuning to 
relate the outputs of the classifier at different locations to 
the overall classification, we believe that this method 
would effectively address our current models’ weakness in 
classifying images with small flowers. Finally, given more 
time, we would like to explore test-time data augmentation 
– given a test image, we would collect a weighted vote on 
classifications of various transformations of the image. 
Once again, this may help solve the misclassification 
issues mentioned previously.  
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