
Human Motion Reconstruction from Action Video Data Using a 3-Layer-LSTM

Jihee Hwang
Stanford Computer Science

jiheeh@stanford.edu

Danish Shabbir
Stanford Electrical Engineering

danishs@stanford.edu

Abstract

Data driven motion generation is a challenging problem.
Typically the model is trained using motion capture (MO-
CAP) data, which is limited in scope and diversity. Solv-
ing this problem using motion data extracted from Youtube
videos would enable motion generation pipelines to feed
from a wider range of action data, allowing for greater
variability in the actions generated. Human action is ex-
pressed through a sequence of bodily movements. Hence,
in this work we explore three stages for the motion synthe-
sis pipeline: first by extracting human pose from video data
with Part Affinity Fields method by [1], and then by train-
ing a 3-Layer Recurrent Neural Network (RNN) that learns
to generate human-like motion for a given class from anno-
tated video data, and finally we explore a simple synthesis
of motion from multiple classes. Ultimately, this approach
could enable robust generation of a wide range of motions,
capturing the the subtle and fine variations of human move-
ment expressed in videos that populate the Internet to arti-
ficially produce life like motion.

1. Introduction
Understanding human motion and utilizing such knowl-

edge to animate natural 3D models is a very crucial part
of any animation or game development pipeline. How-
ever, automatic motion generation from data is still an in-
credibly challenging problem, as it is difficult to effectively
parametrize motion information and learn the underlying
structure of human actions due to lack of large readily avail-
able dataset and

Typically motion capture data is used for motion recog-
nition and generation, but motion capture data is expensive
to gather. On the other hand, the internet is saturated with
video data of human activity. In present work, we investi-
gate three stages of the motion synthesis pipeline. The first
stage is to extract human pose from video data. The sec-
ond stage is to learn a representation for a given action class
from video data with joint positions from step 1. And our
final step synthesizes generated motion from different ac-

tion classes, for example, a motion sequence that displays
walking and waving.

In this work, we seek to learn a representation for a given
action class from labeled video data. Our method, used in
conjunction with state of the art labeling techniques, can
allow motion generation pipelines to feed in from a broad
class of activity data available on the internet, opening up
possibilities for robust automatic motion generation.

1.1. Approach

Motion is characterized by a sequence of movements. To
capture the temporal information in our data, we will base
our model on a Recurrent Neural Network (RNN). RNN
cells are capable of preserving states from previous snap-
shot in time, hence they are suitable for sequential predic-
tion tasks. As such, RNN models are popular for text gen-
eration, where text is seen as a sequence of individual char-
acters.

2. Related Work
2.1. Background

Early approaches to motion generation involved manual
methods such as setting the Degrees of Freedom of human
joints in all key frames and generating continuous motion
by interpolation[8]. While relatively simple, such a method
requires hand crafting an algorithm for each type of mo-
tion and the results were rarely life like. Similarly, Physics-
based approaches have also been introduced to generate mo-
tion by solving ODEs on the torque and trajectory of each
joint position [2]. These models lacked detail and captured
no individuality, thus unsuitable for subtle character cre-
ation.

2.2. Extracting Human Pose from Video Frames

Articulated human pose estimation from video frames is
a long-standing problem in computer vision. In classical
approaches, the pose is estimated by spatially correlating
parts of the body, expressed as a tree-structured graphical
model — what we call a ’skeleton’ of joint positions in this
work — with kinematic priors that couple connected limbs.

1



However, such methods are susceptible to double counting
errors.

Recently convolutional architectures have been a popular
approach towards this problem. We ran Convolution Pose
Machines as described in [9] on our dataset and achieved the
following articulated pose for a still frame from our dataset:

Figure 1. Result from CPM pose detection, as described in [9] on
a still frame from our JHMDB dataset

This leaves more to be desired. 2-D Pose Estimation us-
ing Part Affinity Fields, as described in Cao et. al [1], was
the winning method in 2016 MSCOCO Keypoints Chal-
lenge. The overall pipeline from is illustrated in the figure
below.

This method first computes confidence maps on the in-
put image to detect body parts– each confidence map is a
2D representation of the belief that a particular body part
occurs at a pixel location. Simultaneously, Part Affinity
Fields (PaF) are also computed on the input image. PAF is
a novel feature representation introduced in this work– each
part affinity is a 2D vector field for each limb, this feature
representation allows us to encode location as well as orien-
tation information across different body parts. Then We ran
the open source code on test images from our dataset and
verified the results promised in this work.

Figure 2. Results from [1]

Figure 3. Evaluated on test frames from JHMDB dataset

Figure 4. Evaluated on test frames from JHMDB dataset

This is a strong result on 2-D pose extraction and solves
the first half of our problem, so instead we focused on gen-
erating human motion from these 2D poses using a recurrent
network model.

2.3. Recurrent Network Models for Human Dynam-
ics

Figure 5. A comparison of RNN Models for Human Dynamics
trained on MOCAP data, as presented by Jain, et. al [5]

There has been considerable interest in RNNs for human
motion forecasting, but most of this work has been done

2



on MOCAP data. This figure illustrates the performance of
various RNN architectures trained on 3-dimensional joint
positions from the H3.6m motion data set. Existing imple-
mentations compared in the diagram include S-RNN, ERD,
and a 3-Layer LSTM network [5, 3].

Figure 6. Error comparison between motion prediction results of
RNN models, as presented by Jain, et. al [5]

In present work, we take inspiration from this approach
and extend the RNN work to generate motion data by train-
ing only on videos data labeled with joint positions.

3. Problem Statement

Our main challenge is to design a network that can ro-
bustly generate action of a certain class using only motion
data extracted from videos. Using video data would allow
us access to a wider range of semantic contextual informa-
tion, which would help us to specify the type of motion that
can be generated.

3.1. Dataset

For our investigation, we will work with the JHMDB
dataset of videos labeled with joint positions. Joint-
annotated Human Motion Database (JHMDB) contains 928
clips comprised of 21 action categories from the HMDB51
dataset. Each frame is annotated with 15 joints, providing
scale, pose, coarse viewpoint, and dense optical flow for the
humans in action. [6].

The dataset provides comprehensive coverage of the hu-
man silhouette with joints. The data are split into the fol-
lowing action categories: brush hair, catch, clap, climb
stairs, golf, jump, kick ball, pick, pour, pull up, push, run,
shoot ball, shoot bow, shoot gun, sit, stand, swing baseball,
throw, walk, wave.

3.2. Evaluation Metric

We split the input action video data into a training set and
a test set before training. Then we generated motion for a
certain action class, such as ’clap’, for 40 frames by feeding
in the first 10 seed frames of an action video chosen from
the test set, which means the seed frames are previously un-
seen by the network. We then calculate the mean-squared
loss between the true joint positions and the generated joint
positions at each frame, which is identical to how loss dur-
ing the training stage is calculated.
It is important to note, however, that the goal of this project
is not to predict the next frames of a certain video, but to
robustly generate a generalized motion for a given action
class. The nature of our problem makes it difficult to quan-
titatively evaluate generated data. This evaluation metric
is simply a way to assess the general performance of our
method.
Additionally, we will include generated samples for quali-
tative evaluation with our final submission.

4. Technical Approach

4.1. RNN

Human motion is best modeled as sequential data, as
joint positions in a video frame are dependent on joint po-
sitions in earlier frames. Recurrent Neural Networks or
RNNs are a family of neural networks for processing se-
quential data. A sequence of vectors is processed by apply-
ing a recurrence relation at each time step. In this way, an
RNN can have a memory of the data ingested earlier in the
sequence.

4.2. Long Short-Term Memory

Long Short-Term Memory (or LSTM for short), is a type
of RNN originally conceived in the 1997 by Hochrieter and
Schmidhuber, to improve the gradient flow of existing RNN
networks. Unlike regular RNN cells, LSTM cells maintain
4 different ’gates’ that control the flow of the gradients. This
allows the network to maintain its stability even with multi-
ple layers. It has become an industry standard, and thus we
will be primarily using LSTM cells as opposed to vanilla
RNN structures.

Even though RNNs perform well on sequential data, they
have trouble capturing dependencies over longer sequences.
The four gates of an LSTM allow us to control how much
new input to take and how much of the previous hidden state
to forget.

3



Figure 7. Every 5th frame of ’shooting bow’ action animated with our module

Figure 8. Example of different action classes and their motion no-
tations given by the JHMDB dataset

Figure 9. Four Gated LSTM cell and the associated data flow, from
CS231N

5. Experiment Setup

5.1. Data Pruning

We were able to extract joint position information from
the JHMDB motion dataset. For better results, we decided
to preprocess our dataset and use videos that meet the fol-
lowing criteria: i) contains only one person, ii) facing one

direction per action category (i.e. we pruned videos by ori-
entation), iii) and is longer than 40 frames for a given action
instance. However, we later found that the direction of the
action does not affect the result of the generation motion in
a significant manner, as will be discussed later.

5.2. Animation Module

We developed a simple animation module for testing
purposes (Figure 4). The module is able to take a raw
2 ∗ 15 ∗ frames matrix into a visual representation of joint
movements. This was done using pre-specified data from
JHMDB on joint connectivity.

5.3. Baseline

As a baseline, we implemented a one-dimensional se-
quential RNN network with 3 layers, which effectively
amounts to 120 layers as most motion data instance is com-
prised of 40 frames. The structure was benchmarked from
an existing char-rnn implementation, modified accordingly
to incorporate motion data with a much larger domain for
the resulting probability density function. Because char-rnn
takes one-dimensional time series inputs, each dimension
was trained independently of each other.
Our final loss for each dimension overfit very quickly, as
it reached 0.001 within only 50 epochs for all joint dimen-
sions. We believe the biggest reason is that each joint is be-
ing trained independently of one another, which oversimpli-
fies the problem. To address this issue, in our final network
we used multidimensional LSTM cells where the weights
can represent relationship between each joints.

Figure 10. Loss curve for char-rnn run on the dataset

4



6. Training

6.1. Network Architecture

Figure 11. Our final network architecture

Our final network design involves a 3-Layer-LSTM net-
work structure implemented in Tensorflow. The LSTM cell
has a tanh activation function, with a total series of 39 cells
in order to generate 40 timesteps of human motion. Each
input is sized batch num ∗ 30 ∗ 40, and all x, y positions
of each 15 dimensions (total 30) can be taken in at once,
allowing the network to learn the relationship between each
joints for better preservation of spatial information. Predic-
tion at each timestep produces a mean-square loss with the
ground truth joint positions, which are then fed to an Adam
optimizer.

The nature of our dataset made it difficult to generate
batches. Traditional RNNs are trained in a way so that
each batch is taken from a random window along a single
long sequence; however, our data is comprised of each ac-
tion instance, 40 frames each. Thus, during each epoch, a
batch num random selection of action instances was chosen
for training.

6.2. Hyperparameter Optimization

We tuned the hyperparameters across the following di-
mensions of our network: learning rate, hidden state size,
and number of LSTM layers. The model performance im-
proved as we increased state size and number of layers. By
weighing tradeoffs between computational efficiency and
highest achievable performance, we settled on a model with

3 layers. In conclusion, we found the most optimal hyper-
parameters to be state size of 200 and learning rate of 1e-3.

7. Results
7.1. Training Result

With Orientation Pruning

Figure 12. Training loss curve with orientation pruning

This is the loss curve corresponding to our initial training
pipeline, which includes the orientation pruning step, de-
tailed in the next section. Over a course of around 2 hours
and 30000 epochs, the loss decreases significantly down to
around 1.83e-04 in average. Notice some classes start off
with higher losses than others, such as throw over wave; we
believe this is due to higher intra-class variation within cer-
tain motions than others, as there are more different kinds of
throwing motions than waving motions within the dataset.
However, we observe that after enough training, all of the
action classes converge to a fairly minimal loss.

7.2. Sampling Result

Figure 13. Train and test error comparison chart, on orientation
pruned data

5



Our numeric sampling evaluation was carried out
through the methodology explained above in the 3.2 Eval-
uation Metric section. While the network does seem to
be generally overfitting judging from the lower train errors
compared to test errors, a certain degree of overfitting is un-
avoidable given the low number of training data and high
intra-class variation within each action class. As mentioned
before, the purpose of this project is to derive a general-
ized motion of a certain action, not to perfectly predict next
frames of a given video. Thus, a better evaluation can be
done in a subjective manner by actually observing the sam-
pled motion sequence.

Figure 14. Our sampling pipeline from a trained LSTM network

Figure 15. Motion Forecast Results from our method on three dif-
ferent classes, sampled every 10 frames

Using our animation module, for each class we can ob-
serve the motion that the network generates given an initial
seed of 10 frames from an unseen action video. The re-

sult for the three classes Throw, Clap and Shooting Bow—
snapshot every 10 frames—is presented above.
The network generates surprisingly accurate recreations of
the action even when the initial seed frames remain fairly
stationary. The impressive generalization capabilities of the
network are even apparent from its ability to effortlessly
synthesize motion from different action instances. For ex-
ample, the test video for the clap motion involves a baby
clapping multiple times; however, a large number of clap-
ping motions in the training set involve a single clap. As
a result, provided the initial frames of the baby’s joint po-
sitions, the network develops a lifelike motion of the baby
clapping a single time as opposed to multiple times, while
maintaining the sitting posture of the baby.

Without Orientation Pruning

Figure 16. Training loss curve on unpruned motion data

Each action video in the JHMDB dataset comes with an ac-
tion direction parameter. This is the direction the motion
is being filmed in relation to the person in action. For ex-
ample, a clapping action could be filmed from either the
front or the side of the subject. This annotation is especially
crucial as we are dealing with 2-dimensional joint position
data, instead of 3-dimensional positions generated from mo-
tion capture, and our input can drastically fluctuate depend-
ing on the camera orientation. Our initial decision to prune
motions by orientation, i.e. only consider motions with the
same direction, was inspired to help the network more eas-
ily establish a single model of motion.
Contrary to our expectations, however, our tests later show
that orientation pruning has relatively minimal effects on
the training abilities of the LSTM network. In fact, pruned
data sets initially have a higher loss — we postulate that
this is due to a much smaller number of data in the pruned
case. Not surprisingly, pruned data converge much quicker
than unpruned data; however, in the long term, there are not
many visible differences between the two.

6



Motion sampling tests indicate that even without pruning,
the model is still able to generate life-like actions, even
though the performing skeleton is a bit unstable. Amus-
ingly, for the baby clap example that was discussed in the
section above, the unpruned model generates a baby’s mo-
tion that claps multiple times instead of just once. This is
likely due to the fact that there were many multiple clap ac-
tion videos that were filmed from the side, which were then
pruned away in the above orientation-pruned model.

7.2.1 Motion Synthesis

While generating motion for each pre-classified action is a
difficult problem in itself, a robust algorithm to effectively
synthesize motion from different action classes would al-
low a far wider range of motion generation without having
to extensively label each action in a detailed way. Such al-
gorithm could also be potentially crucial in the problem of
motion generation from description, made possible by the
use of rich textual background information that can be de-
rived from videos along with joint positions.

Baseline Synthesis Pipeline

Figure 17. Motion synthesis result from walk and wave

To demonstrate that our 3-Layer-LSTM is robust to sim-
ple motion synthesis methods, we tested our model’s capa-
bility to combine two existing action classes and generate
novel motion trajectories. The synthesis was performed by
training two models on two separate actions; then, relevant
joints were selected for each action class. For example,
in our combination pipeline of walk and wave, the upper
body joints were selected for the wave motion and the lower
joints were selected for walk.

We then fed each separate model the same initial frames
taken from a test walk video. The final generation is pro-
duced by combining motions generated by each model, se-
lecting the relevant joints from each.

The result from this process is as above. The motion is
fairly realistic; one can observe that the character is walking
and waving at the same time. However, there is a slight off-
set between the upper and lower body of the character. This

is because the upper and the lower body were trained on
completely separate models, and the relationship between
the two (positional constraint) could not be preserved with
the current synthesis algorithm.

To solve such issues, incorporating a more sophisticated
synthesis pipeline is unavoidable, of which the potential ap-
proaches are discussed below.

S-RNN

Figure 18. Hybrid motion of lifting a leg and jumping at the same
time, a generation result from S-RNN as described in Jain, et. al
[5]

A work by Jain et al.[5] introduces s-RNN, short for
Structural-RNN. The idea is to represent the spatio-
temporal graph describing the problem as a mixture of
RNNs. Spatiotemporal graphs (st-graphs) are a general tool
for representing such high level structure. The nodes of
the graph typically represent the problem components - in
our case joints on the body - while the edges capture their
spatio-temporal interactions. This way, the relationship be-
tween each joint movements can be preserved, leading to a
more realistic synthesis result.

Motion Parametrization

Figure 19. High-level motion parameterization pipeline as de-
scribed in Holden, et. al [4]

The work by Holden, et. al [4] produces extremely realistic
motion generation results from high-level motion parame-
ters, such as generation walking motion given the trajectory
of the character. By designing a separate network structure

7



to learn motion parameters, a more robust motion synthesis
method would be made possible.

8. Discussion

8.1. Conclusion

Our 3-Layer-LSTM network is an extremely robust im-
plementation that can generate life-like recreations of a cer-
tain action class, trained only on 2-D information derived
from videos. While motion data from videos can be ex-
tremely noisy due to low detail, high sensitivity to action
orientation and inherent imperfection in joint detection al-
gorithms, our network is able to construct a stable, smooth
motion for any given reasonable initial seed data. We be-
lieve this project demonstrates the versatility and the ca-
pability of RNNs, performing fairly well even with noisy
two-dimensional motion inputs. Given that videos of hu-
man motion are not only extremely available and accessi-
ble on the net today, but also carry a significant amount of
contextual information that can be extracted with computer
vision techniques, we hope this project opens the problem
of motion generation to be integrated into the wider field of
computer vision.

8.2. Steps Forward

One of our next goals is to design a better network to
solve this problem. A series of one-dimensional LSTM
cells is not suited to handle spatial-temporal information,
so we hope to better capture the high level structure of our
problem with a Grid-LSTM or s-RNN. An s-RNN might
better capture spatial relations between the joints and tem-
poral edges between frames of the video. We will evaluate
the comparative performance of the models, if we find a
high performing model we could train it further with ad-
versarial loss to generate motion data. Finally, following
the initial motivation for this project, we believe taking ad-
vantage of existing computer vision and graphics research
would lead to a very exciting field of semantic motion gen-
eration. Using semantic captioning networks[7] along with
motion synthesis implementations[4], one could possibly
generate a motion sequence from a given semantic descrip-
tion of such action.

9. Appendix

Github Repo
https://github.com/alarmringing/text2motion

References
[1] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. arXiv
preprint arXiv:1611.08050, 2016.

[2] P. Faloutsos, M. Van de Panne, and D. Terzopoulos. Compos-
able controllers for physics-based character animation. pages
251–260, 2001.

[3] K. Fragkiadaki, S. Levine, and J. Malik. Recurrent network
models for kinematic tracking. CoRR, abs/1508.00271, 2015.

[4] S. Holden and Komura. A deep learning framework for char-
acter motion synthesis and editing. 2016.

[5] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena. Structural-
rnn: Deep learning on spatio-temporal graphs. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5308–5317, 2016.

[6] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black. To-
wards understanding action recognition. Proceedings of the
IEEE International Conference on Computer Vision, pages
3192–3199, 2013.

[7] Y. Pan, T. Yao, H. Li, and T. Mei. Video captioning with
transferred semantic attributes. CoRR, abs/1611.07675, 2016.

[8] K. Perlin and A. Goldberg. Improv: A system for scripting
interactive actors in virtual worlds. pages 205–216, 1996.

[9] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-
volutional pose machines. pages 4724–4732, 2016.

8


