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Abstract

In the field of reservoir engineering, lower dimensional
reparameterization for complex geological models is an
important but challenging problem. Properties for com-
plex geological models such as facies are non-Gaussian,
characterized by multipoint spatial statistics. Traditional
reparameterization method such as principal component
analysis (PCA) only works well for Gaussian models that
can be characterized by two-point spatial statistics [8].
The recently developed optimization-based PCA (O-PCA)
is shown to provide better performance for non-Gaussian
models [9]. However, O-PCA relies on hard data at well
locations. The performance of O-PCA for unconditional
models is not satisfactory. In this study, we explore the
application of neural style transfer [1] for the reparame-
terization of non-Gaussian geological models. The neural
style transfer algorithm is firstly introduced for transfer-
ring photographs to new images that resembles the styles of
famous artworks, and extended to more applications such
as video style transfer [4]. Our idea is to use the neural
style transfer algorithm as a post-processing step after tra-
ditional PCA transformation. PCA transforms the original
non-Gaussian model into Gaussian-like models. The pur-
pose is to apply the neural style transfer algorithm to trans-
fer the Gaussian-like PCA model to match the style of the
original non-Gaussian model. We will perform both O-PCA
and neural style transfer to preprocess same PCA models.
Visual inspection will be performed to evaluate the results,
in terms of matching style of the original model and geolog-
ical realism.

1. Introduction
This study is in the field of oil and gas reservoir engineer-

ing. We are dealing with a special kind of ”photo”. In our
case, it is the permeability map of a subsurface oil and gas
reservoir. Permeability describes how easily fluid can flow
through the porous rocks in the reservoir. Larger permeabil-
ity values means fluid flows through the porous rocks more
easily. For example, Fig. 1 (a) represents the permeability

map of a hypothetical 2d reservoir. Red color represents
high permeability rocks such as sandstone, while blue color
represents low permeability rocks such as shale. This model
represents a channelized reservoir, we can see the high per-
meability sandstone follows some paths like river-channels.

Because oil and gas reservoirs are deeply underground,
we can not measure the permeability map for the whole
reservoir. In practice, we only have measurement data at
few locations where we drill wells, and these measurement
data are referred to as hard data. To accurately quantify the
uncertainty of such system, we need to generate a very large
amount of different permeability maps. However, it is very
difficult for this type of channelized reservoirs, since a per-
meability map is often high dimensional and have strong
spatial correlation.

Traditionally, we use PCA to reduce the dimension and
to allow us generate large amount of permeability maps. For
example, one example is shown in Fig. 1 (b), but we can
see PCA models kind of smooths out the sharp constrast
between high and lower permeability values shown in this
permeability map. Traditionally, what we do is to introduce
postprocess step on the PCA permeability map to get back
the sharp contrast. One popular approach is the so-called
optimized-based-PCA (O-PCA) which is essentially a pix-
elwise histogram transformation. The O-PCA result for this
PCA permeability map is shown in Fig. 1 (c), we can see
that we do get back the sharp contrast, however, the con-
nectivity of the channels is somehow destroyed.

In this study, we use the neural style transfer algorithm
to postprocess the PCA permeability map. We will first de-
scribe the problem in the language of reservoir engineering.
As shown in Fig. 1(a), the original model is permeability
of a channelized reservoir defined on a 60 × 60 grid. The
original model is binary, meaning permeability is either of
type 1 (red), representing high permeability sand, or of type
0, representing low permeability mud. The corresponding
PCA approximate model, as shown in Fig. 1(b), captures
the location of sand and mud. However, the PCA model
is no longer binary. The problem is to postprocess the PCA
model to generate a new model that is approximately binary,
consistent with the original model. O-PCA is one solution
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to this problem. The idea of O-PCA for this binary model
is similar to simply snapping PCA values to 0 and 1, but
in a more sophisticated way based on optimization that pre-
serves some intermediate values and renders the mapping
differentiable. The corresponding O-PCA model is shown
in Fig. 1(c). O-PCA works well for this model because the
PCA model is reconstructed from the original model. Its
performance deteriorates when we deal with randomly gen-
erated PCA models.

(a) Original model (b) PCA model (c) O-PCA model

Figure 1: PCA and O-PCA transformation for a binary
model.

This problem can be viewed as an image style transfer
problem. The facies distribution defined on the 60 × 60
grid can be viewed as an image with 60 × 60 pixel, each
gridblock being one pixel. The facies values on each grid-
block can be mapped to RGB values. The original model
has a binary style, with only red and blue color. The PCA
approximate model captures the content of the original im-
age. Here content means the close-to-red stripes and close-
to-blue patches, and their locations in the image. But the
style of the PCA approximate differs from the binary style.
Therefore, we can formulate the problem as transfer the
PCA model into the style of the original image.

To fit the problem in the neural style transfer algorithm,
we take the PCA model as the input content image, and the
original model as the target style image. We will use the an
PyTorch implementation of the original neural style transfer
algorithm [10], based on a pre-trained VGG model [6].

2. Related Work
In this section, we will describe traditional approaches

for lower dimensional reservoir reparameterization includ-
ing PCA and O-PCA.

2.1. PCA

The application of principal component analysis (PCA)
to parameterize reservoir models or production data has
been discussed by many authors; see, e.g., [5, 8, 7]. First,
a set of Nr reservoir model realizations is generated using
geostatistical toolbox [3], and each realization comprises a
column of the following data matrix

Xc = [m1 − m̄ m2 − m̄ ... mNr − m̄], (1)

where mi is a geological realization of dimension Nc =
3600, and m̄ is the mean of all Nr realizations. Performing
singular value decomposition of the matrix Xc/

√
Nr − 1

gives

Xc =
√
Nr − 1UΣV T =

√
Nr − 1ΦV T , (2)

where Φ is the so-called basis matrix. Given this basis ma-
trix, the PCA realizations can be generated through appli-
cation of

m = Φξ + m̄, (3)

where ξ is a low-dimensional vector drawn from standard
normal distribution. One example of the randomly gener-
ated PCA model is shown in Fig. 4(a).

2.2. O-PCA

Optimization-based PCA is essentially a post-processing
method [8], that seeks to transform the value of each pa-
rameter/pixel assisted with the target histogram. In the case
binary models (e.g., channelized system), the O-PCA result
is obtained by minimizing the following objective function

m = argmin
x

{
||Φξ+ m̄−x||22 +γxT (1−x)

}
, xi ∈ [0, 1],

(4)
where xi indicates an element of x, and γ is the weight of
the regularization term. See [8] for detailed discussions and
explanations. We can see from Eq. ?? that O-PCA modifies
the value of each parameter independently, the correlations
between different parameters are not considered.

3. Method
In this section, we will describe the key methods in this

study. We will start with a brief description to the neural
style transfer algorithm [1] and the fast neural style trans-
fer algorithm [2]. Then we will introduce the procedure of
applying the neural style transfer algorithm for reparame-
terization. We name the procedure CNN-PCA since it com-
bines PCA and CNN-based neural style transfer algorithm.
Next we will introduce additional loss term to handle hard
data constraint. Hard data refers to the measurements at
well locations that need to be preserved during the repa-
rameterization process.

3.1. Neural Style Transfer

The neural style transfer algorithm developed in [1] takes
two images: an input image and a reference image. Denote
the input image/model as I , reference image S and output
image O. The output image is generated by minimizing the
following objective function

Lt =

L∑
l=1

αlL
l
c + λ

L∑
l=1

βlL
l
s, (5)
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Figure 2: Neural style transform for reservoir reparameterization, modified from [1].

Figure 3: Fast neural style transform for reservoir reparameterization, modified from [2].

where

Ll
c =

1

2NlDl

∑
ij

(Fl[O]− Fl[I])2ij , (6)

Ll
s =

1

2N2
l

∑
ij

(Gl[O]−Gl[S])2ij . (7)

Lh =
∑
ij

hij(I −O)2ij . (8)

Here L denotes the total number of convolutional layers and
l indicates the l-th convolutional layer. Fl[·] ∈ RNl×Dl and

Gl[·] = Fl[·]Fl[·]T ∈ RNl×Nl represent the feature matrix
and Gram matrix. λ is a weight that represents the tradeoff
between the input and reference images. See [1] for detailed
explanations of the algorithm. In this study, we simply use
the pre-trained model from [1].

3.2. CNN-PCA

To apply the neural style transfer algorithm for reparam-
eterization, we first use PCA to transform the permeability
map m to lower dimensional variable ξ using Eqs. 1 to 2.
Sampling ξ from the standard normal to allow us gener-
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ate multiple realizations of the permeability map. These
permeability maps are not binary. So we apply the neu-
ral style transfer algorithm to post-process the PCA real-
izations. Each PCA realization of the permeability map
is taken as the content image. The original binary perme-
ability map is taken as the style image. As illustrated in
Figs. 2 and 3, both slow neural style transfer algorithm and
the fast neural style transfer algorithm can be applied. This
procedure is named as CNN-PCA.

3.3. Hard Data Constraint

Hard data are measurement data of the permeability val-
ues at well locations. In the process of reparameterization,
we need to ensure that the output permeability maps have
the correct permeability value at well locations. The PCA
models will always honor hard data. However, the direct
application of CNN-PCA does not guarantee that hard data
are honored. Therefore, we introduce an additional hard
data loss term in the neural style transfer algorithm,

Lt =

L∑
l=1

αlL
l
c + λ

L∑
l=1

βlL
l
s + ωLh, (9)

where
Lh =

∑
ij

hij(I −O)2ij (10)

is the hard data loss. Here hij is the hard data indicator,
with hij = 1 meaning there is hard data at location (i, j).
And ω is the hard data weight, which is set to a large value
to enforce the hard data constraint.

4. Results
4.1. Unconditional Models

Figure 4(a) presents a 2D PCA reservoir model, which
is of size 60 × 60. Figure 4(b) plots a reference geolog-
ical model that is binary channelized system. Our target
is to post-process the PCA model such that the resulted
model is as realistic as possible. Here realistic models rep-
resent those that have the binary channelized features as
in Fig. 4(b). The O-PCA result is shown in Fig. 4(c). It
is evident that the O-PCA result display better binary fea-
ture in comparison with the original PCA model. How-
ever, the connectivity, which represents large-scale correla-
tion, of channels in the O-PCA result is poor, in comparison
with the apparent connectivity shown in the reference model
(Fig. 4(b)). The resulted poor connectively in O-PCA result
is due to the lack of large-scale correlation constraint in the
O-PCA formulation shown in Eq. 4. Figure 4(d) shows the
result using neural style transfer (CNN-PCA). We can see
that both the binary feature for each parameter/pixel and the
channel connectivity show significant improvement com-
pared with the PCA model. This result demonstrates that

the application of neural style transfer is capable of cap-
turing the large-scale correlation and high-order geological
statistics.

(a) PCA model (b) Reference style

(c) O-PCA result (d) CNN-PCA result

Figure 4: Reparameterization of PCA model using O-PCA
and neural style transfer (Case 1).

Figure 5 shows the neural style transfer results with dif-
ferent value of the weighting parameter λ. From Eq. 9, the
larger λ is, the more weight is on the reference style im-
age. This effect is obvious when looking at the middle-
right channel in the transferred results. In the original PCA
model, there are indications of a very thick channel; how-
ever, in the result with λ = 5 (Fig. 5(d)), the width of the
channel becomes much narrower. In the cases with smaller
λ (Figs. 5(b) and 5(c)), the corresponding channels stay rel-
atively thick. It is expected that the narrowing of channels
is resulted from the reference-style model shown in 4(b),
in which all channels width are consistently narrow. In this
study, we use λ = 5 for cases considered.

4.2. Conditional Models

Figure 6 shows a similar comparison study for a differ-
ent case. The PCA model is shown in Fig. 6(a). In this case,
the pixel value at the 12 wells’ (white dots and triangles) lo-
cations are known, and therefore, the post-processed model
must honor the measured well data (hard data) at these loca-
tions. To achieve this goal, we added a hard data loss in the
total loss function in Eq. 9. The weight assigned to the hard
data component (w) is specified to be a very large value to
ensure the honor of hard data during the neural style transfer
procedure.

The reference model (Fig. 6(b)) used is the same as in
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(a) PCA model (b) λ = 0.1

(c) λ = 0.5 (d) λ = 5

Figure 5: Neural style transfer results with different λ pa-
rameters.

Case 1. It is interesting to see the comparison of the re-
sults at the lower-left corner, where the O-PCA result shows
very wide channel, while the CNN-PCA result displays rel-
atively narrow channel. From the reference model, we can
see that the channel width is relative consistent and narrow.
Therefore, the CNN-PCA result actually preserves the ref-
erence style, which is what we want, even when the original
PCA model display non-desirable feature (wide channel at
the lower-left corner). This result clearly demonstrates the
capability of CNN algorithm to capture the high-order fea-
tures in the reference model and impose those to transferred
model. It is, therefore, of great interest to further investigate
the application of CNN, particularly neural style transfer,
for reservoir parameterization.

4.3. Bimodal Models

We now extend the application of CNN-PCA to a
more challenging case. The reference model is shown in
Fig. 7(b). Within each faces (sand and shale), the per-
meability values are also uncertain. Again, it is apparent
that the CNN-PCA results display better channel features in
comparison with the O-PCA results. For example, all chan-
nels at the lower-left corner (Figs. 7(a) and (c)) terminate at
the well location, which indicates the poor quality of both
PCA and O-PCA models, as the channel length is generally
long when looking at the reference model. However, in the
CNN-PCA model, we can see that the lower-left channels
are naturally extended toward the boundary of the system.
It is, however, notable that, in the CNN-PCA result, the dis-

(a) PCA model (b) Reference style

(c) O-PCA result (d) CNN-PCA result

Figure 6: Reparameterization of conditional PCA model us-
ing O-PCA and neural style transfer (Case 2).

tributions of permeability values within each face are less
smooth compared with the distributions shown in the refer-
ence style. It is of interest to address this non-smoothness
of CNN-PCA results in bimodal cases as of future work.

(a) PCA model (b) Reference style

(c) O-PCA result (d) CNN-PCA result

Figure 7: Reparameterization of bimodal PCA model using
O-PCA and neural style transfer (Case 3).
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4.4. Comparison of Flow Statistics

Once reservoir models (e.g., Figs 4 and 6) are generated,
we evaluate the potential of water injection rate, water and
oil production rate from the wells, which are the quantities
of most interest, drilled throughout the reservoir. The pro-
duction rates can then be used to evaluate the performance
of the system. The well patterns considered in this work are
shown in Fig. 6(a), with white triangles representing injec-
tors (which inject water into the reservoir), and round cir-
cles producers (which produce oil and water). The produc-
tion rates are obtained through traditional numerical reser-
voir simulator. Because of the uncertain nature of subsur-
face reservoir properties, therefore are infinite number of
possible reservoir models. In this study, we generated an
ensemble of 200 models for both the conditional (Fig. 4)
and unconditional (Fig. 6) cases. These ensemble of mod-
els are then used to obtain the simulated well flow rates.

Figure 8 shows the flow statistics (P10, P50, and P90)
computed from the ensemble of flow rates corresponding to
the unconditional case. Figure 8(a) shows P10, P50, and
P90 curves for field water production rate corresponding
to SGeMS, PCA, O-PCA, and CNN-PCA models. Here
SGeMS models provide the reference results to benchmark
with. The total simulation time is 3000 days. It is clear
that the CNN-PCA flow statistics results (dashed blue lines)
match closely with the reference results (solid red lines),
and display significant improvements compared with the O-
PCA results (dashed black lines) and PCA results (dashed
yellow lines). Figure 8(b) plot the water rate from P7, which
is an injector and therefore shows negative production rate.
Again, it is evident that the CNN-PCA results agree well
with the reference results, and show significant improve-
ments compared with the PCA and O-PCA results. Similar
observations hold for the P2 oil production rate (Fig. 8(c))
and water production rate (Fig. 8(d)).

Figure 9 shows the flow statistics corresponding to the
conditional systems shown in Fig. 6. In this case, because of
the availability of well hard data, the O-PCA results match
reasonably well with the reference results, except for the P4
water rate shown in Fig. 9(b)). While the CNN-PCA results
display much closer match with the reference results for all
the well rate statistics shown in Fig. 9. The results shown
in Figs. 8 and 9 demonstrate the CNN-PCA is indeed use-
ful for the reparameterization of complex binary geological
models, at least in the cases considered.

5. Conclusion

We applied a neural-style transfer algorithm for the post-
processing of unconditional and conditional binary (fa-
cies) channelized models, and also for bimodal channel-
ized system. The transferred models are referred as CNN-
PCA models. In comparison with the traditional popular

(a) Field water rate (b) P7 water rate

(c) P2 oil rate (d) P2 water rate

Figure 8: Flow statistics (P10, P50, and P90) for uncondi-
tional channel model shown in Fig. 4.

(a) Field water rate (b) P4 water rate

(c) P8 oil rate (d) P8 water rate

Figure 9: Flow statistics (P10, P50, and P90) for conditional
channel model shown in Fig. 6.

approach, optimization-based PCA (O-PCA), CNN-PCA
models clearly display better connectivity of the channels,
and also the sharp contrast between different facies. The
CNN-PCA models also provide better prediction of the well
rate flow statistics in comparison with the O-PCA models
for the binary geological cases. The reason for this im-
provement is that spatially correlations of geological mod-
els are considered by the CNN-PCA algorithm with multi-
ple convolutional layers, while, in O-PCA approach, essen-
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tially only pixel-wise histogram transformation is applied.
However, there are some issues with the CNN-PCA re-
sults, particularly for the bimodal cases, in which the CNN-
PCA models display rougher distribution of permeability
values within each geological facies. In the future work,
we will add some smoothness constraints in the loss func-
tion for CNN-PCA, which is possible to help address the
non-smoothness issue.
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