
Residual Networks on Tiny ImageNet
Lei Sun

Introduction

Deep Residual Networks has been

proven to be a very successful

model on image classification. A

ResNet with 152 layers achieved

the best results of 3% error rate,

which is even better than human

judges. In this project, we trained

a state-of-art ResNet with various

techniques on tiny ImagetNet. It

achieves 45% error rates, ranking

the 3rd on the evaluation server

(By now)

Tiny ImageNet

For this project, we will use the

Tiny ImageNet - a subset of

ILSVRC. It follows the same

principle, though on a much

smaller scale:

Examples in Tiny ImageNet

- 200 different categories

- 500 training images in each

(100,000 in total)

- 50 validation images in each

(10,000 in total)

- 50 test images

(10,000 in total)

- Re-sized to 64x64 pixels

(256x256 pixels in standard

ImageNet).

Resnet and Model #1

A layer in a traditional neural

network learns to calculate a

function

y = f(x)

A residual neural network layer

approximately calculates

y = f(x) + id(x) = f(x) + x.

Identity connections enable the

layers to learn incremental, or

residual, representations. Those

shortcuts act like highways and

the gradients can easily flowback,

resulting in faster training and

much more layers.

Improved Model #2

So far, the biggest challenge in

this project is that we only have

500 training images for each

category. During the training

process, our model sees the same

set of images again and again. To

avoid overfitting, the following

improvement are made.

Stochastic Depth

A modified version of classic

dropout. Entire layers get

dropped randomly instead of

nodes within layers.

Even more Image Augmentation

In order to make the best use of

our training data, we augmented

them via a number of random

transformations

- Invert

- Brightness

- Noise

- Flip

- Rotate

- Scale

- Shift

- Shear

Model #3 is still under training, I

expect to have a performance

boost on it… Will include it in

final report.

More is coming (Model #3)

Improved Results #2
Training Err = ~35%

Val Err = ~40% (Test Err 43%)

Less overfitting

But similar performance

Result #1

Training Err = 0!

Val Err = 50% (Test Err 48%)

OVERFITTING!

