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Introduction

Deep Residual Networks has been 

proven to be a very successful 

model on image classification. A 

ResNet with 152 layers achieved 

the best results of 3% error rate, 

which is even better than human 

judges. In this project, we trained 

a state-of-art ResNet with various 

techniques on tiny ImagetNet. It 

achieves 45% error rates, ranking 

the 3rd on the evaluation server 

(By now)

Tiny ImageNet

For this project, we will use the 

Tiny ImageNet - a subset of 

ILSVRC. It follows the same 

principle, though on a much 

smaller scale:

Examples in Tiny ImageNet

- 200 different categories

- 500 training images in each 

(100,000 in total)

- 50 validation images in each

(10,000 in total)

- 50 test images

(10,000 in total)

- Re-sized to 64x64 pixels 

(256x256 pixels in standard 

ImageNet).

Resnet and Model #1

A layer in a traditional neural 

network learns to calculate a 

function 

y = f(x)

A residual neural network layer 

approximately calculates 

y = f(x) + id(x) = f(x) + x.

Identity connections enable the 

layers to learn incremental, or 

residual, representations. Those 

shortcuts act like highways and 

the gradients can easily flowback, 

resulting in faster training and 

much more layers.

Improved Model #2

So far, the biggest challenge in 

this project is that we only have 

500 training images for each 

category. During the training 

process, our model sees the same 

set of images again and again. To 

avoid overfitting, the following 

improvement are made.

Stochastic Depth

A modified version of classic 

dropout. Entire layers get 

dropped randomly instead of 

nodes within layers.

Even more Image Augmentation

In order to make the best use of 

our training data, we augmented 

them via a number of random 

transformations

- Invert

- Brightness

- Noise

- Flip

- Rotate

- Scale

- Shift

- Shear

Model #3 is still under training, I 

expect to have a performance 

boost on it… Will include it in 

final report.

More is coming (Model #3)

Improved Results #2
Training Err = ~35%

Val Err = ~40%  (Test Err 43%)

Less overfitting

But similar performance

Result #1

Training Err = 0! 

Val Err = 50%  (Test Err 48%)

OVERFITTING!


