Stanford University / CS231N / Spring 2017

CHILDNet: Curiosity-driven Human-In-the-Loop Deep Network

Byungwoo Kang¹, Hyun Sik Kim², Donsuk Lee³

INTRODUCTION

Humans can learn actively and incrementally

Active Learning

- Human annotation is expensive
- · Choose examples to request labels for

Incremental Learning^[5]

- New visual concepts emerge in the real world
- Learn new concepts while preserving existing knowledge
- Active + Incremental Learning System

PROBLEM STATEMENT

Goal

Class-incremental online active learning from continuous unlabeled image stream

Task Definition

- Stream of unlabeled image data
- Labels are only available upon request
- Number of classes can increase over time
- Learn to recognize new classes online using as few examples as possible

Evaluation

- Label request rate
- Prediction Accuracy

DATASET

Omnialot^[1]

- 1.623 classes of characters
- 20 hand drawn examples per class
- Total 32,460 examples
- 800 classes for training, 400 classes for validation, 423 classes for testing

METHODS

Siamese Net for One-shot Classification^[7]

- Trained for same/different pair verification tasks
- Maintains running mean of features for each class
- Given input image x, predict class C^* such that

$$C^* = argmin_c p^{(c)}(x)$$

where $p^{(c)}(x)$ is similarity score between x and mean of class *c*

Reinforcement Learning Model

- Siamese network for feature extraction and incremental learning
- RL agent decides whether to request a label or make a prediction
- Policy gradient with parameter update rule:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{\alpha} \, \nabla_{\boldsymbol{\theta}} \log \left(\pi_{\boldsymbol{\theta}} \left(s_t, a_t \right) \right) \boldsymbol{v}_t$$

where, v_t is an episode discounted reward

Stanford University

EXPERIMENTS

Train

- Sample 10 classes per episode
- 30 images from the 10 classes per episode
- 20,000 episodes for training

Test

- N classes per episode
- All images from N classes per episode

RESULTS

Label Requests

Prediction Accuracy

The model makes fewer requests and achieves higher accuracy on later instances of a class It makes decisions based on uncertainty about its own knowledge

Trading Accuracy for Requests

	Accuracy(%)	Requests(%)
Supervised	93.4	100
RL Prediction $(R_{inc} = -1)$	87.7	17.0
RL Prediction $(R_{inc} = -5)$	92.1	24.1
RL Prediction($R_{inc} = -10$)	93.2	26.3

% of correct predictions and % of label requests Increasing the penalty for an incorrect prediction improves accuracy at the cost of more label requests

Varying number of classes

- Number of classes
- Number of classes
- Number of classes Number of classes
- classes

CONCLUSION

- possible
- for requests

FUTURE WORK

- ImageNet
- in the loop

BIBLIOGRAPHY

- preprint arXiv:1703.03400.
- Recognition (CVPR).

	Accuracy(%)	Requests(%)
<i>s</i> = 3	96.4	16.7
s = 10	87.7	17.0
s = 20	77.1	17.2
s = 40	64.9	16.7

The model is trained with 10 classes per episode The model is applicable to variable number of

Class-incremental^[5] online active learning is

The choice of rewards can trade off accuracy

Experiment the model with larger datasets, e.g.

Develop automatic data annotator with humans

1 S. Ager. Omniglot - writing systems and languages of the world. Inwww.omniglot.com, 2015.

2 C. Finn, P. Abbeel, and S. Levine. Model-agnostic metalearning for fast adaptation of deep networks, 2017. arXiv

3 K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2016. In Computer Vision and Pattern

4 E. Lughofer. Single-pass active learning with conflict and ignorance, 2012. In Evolving Systems.

S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. iCaRL: Incremental classifier and representation learning, 2017. In Computer Vision and Pattern Recognition (CVPR). 6 M. Woodward and C. Finn. Active one-shot learning, 2016.

7 G. Koch, R. Zemel, and R. Salakhutdinov. Siamese Neural Networks for One-shot Image Recognition, in 2015. In 32nd International Conference on Machine Learning (ICML).

> 1. bkang@stanford.edu 2. hsik@stanford.edu 3. donlee90@stanford.edu