
Our Solution Models

We run a simple model as a proof-of-concept, 
and also append Maldrop to SqueezeNet.
● Conv (with ReLU activation function) to 

Spatial BatchNorm to Conv (with ReLU 
activation function) to MalDrop to Affine.

● ImageNet and CIFAR.
● PyTorch.
● Code: git.io/maldrop.

Malicious Dropout
Jack Maris and Iskandar Pashayev

Can intermittently dropping prominent features improve generalization?

≉yi

Each neuron hj is given a score equal to the its contribution to cyi (that is, hjwj, yi) minus ⍵ times the 
sum of its contributions to c≠yi. The top ⍴ neurons are dropped. Then h is recalculated.

Problem / Background

What is a zebra? We recognize that it has stripes, 
hooves, and a face with a certain curvature.

A network which only learns that it has stripes may get 
great Loss on training data. But it would generalize poorly: 
it might classify a fence as a zebra. We want the network 
to learn what we learn.

Dropout helps by occasionally dropping, e.g. 
stripe-ness [1]. This forces the network to learn other 
features. L2 normalization can prevent certain features 
from dominating. And Dropout modifications in the 
literature include Nested Dropout [2], which aims at 
dimensionality reduction.

But Dropout can be cumbersome. What if we were to 
target the most useful features on some trials? 

We propose a method for dropping the features which 
cause the loss to increase the most. We then report results 
of various mechanisms for interleaving this method. 

≈ 0

≈ 0

>> 0

≈ 0

≈ 0

≈ 0

0

≈ 0

≈ 0

≈ 0

>> 0

≈ 0

yi

≉yi

≉yi

yi

≉yi

Findings

● Most effective placement: immediately before a network’s final affine layer.
○ More efficient (fewer backprop steps to compute twice).
○ Otherwise, combinatoric possibilities: d-choose-ρ !
○ Exception: networks which propagate loss from multiple places, e.g. GoogLeNet [4].

● It is useful to vary the method used between trials. Either change ρ, intersperse vanilla 
Dropout trials, or intersperse no-Dropout trials.

● We expect certain tasks to be better suited to Malicious Dropout than others. We are 
informed by how vanilla Dropout fares in certain domains (e.g. relatively poorly in recurrent 
networks [3]).

● Network with two CONV layers and a MalDrop layer on CIFAR10 data: performance similar 
to network with regular Dropout layer, with exception of reverse annealing.

● Different modes of rho yield similar results. Future Work
● Improve efficiency.
● Time-Space tradeoff of MalDrop computation.
● Numerically stable reverse annealing.

Citations
[1] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. 
Salakhutdinov. Dropout: a simple way to prevent neural networks 
from overfitting. Journal of Machine Learning Re- search, 
15(1):1929–1958, 2014.

[2] O. Rippel, M. Gelbart, and R. Adams. Learning ordered 
representations with nested dropout. In International Conference 
on Machine Learning, pages 1746–1754, 2014.

[3] C.Szegedy, W.Liu, Y.Jia, P.Sermanet, S.Reed, D.Anguelov, D. 
Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with 
convolutions. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pages 1–9, 2015.

[4] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural 
network regularization. CoRR, abs/1409.2329, 2014.

h c h cm

⍴ Schedules
We try 5 different ⍴ schedules.
Static: ⍴ is the same at each iteration.
Random: ⍴ is sampled from ~Uniform(0,n) at each iteration, where n is the number of neurons the layer.
Forward Annealing: Steadily increase some initial ⍴0 with each epoch i ≥ 0, with a maximum of L number of neurons.
Reverse Annealing: .Steadily decrease some initial ⍴0 with each epoch i ≥ 0, with a minimum of 0 neurons.
Periodic: say t is the trial number, and pick a parameter s. When t % s = 0 use Maldrop; otherwise, use vanilla Dropout.

Forward Annealing

Reverse Annealing


