



| ≈ 0                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                              | ≉y <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| >> 0                                                                                                                         | y <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ≈ 0                                                                                                                          | ≉y <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| h                                                                                                                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Each neuron h <sub>j</sub><br>sum of its contr                                                                               | is given a score e<br>ibutions to c <sub>≠yi</sub> . T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| We try 5 different<br>Static: ρ is the sau<br>Random: ρ is sam<br>Forward Anneali<br>Reverse Anneali<br>Periodic: say t is t | c ρ schedules.<br>me at each itera<br>npled from ~Unif<br><b>ng</b> : Steadily incr<br><b>ng:</b> .Steadily dec<br>the trial number,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                              | $\approx 0$ $\approx 0$ $\approx 0$ $\approx 0$ $\approx 0$ $h$ Each neuron h <sub>j</sub><br>sum of its contressor<br>Static: $\rho$ is the same<br>Random: $\rho$ is same<br>Forward Annealit<br>Reverse Annealit<br>Periodic: say t is the same the |

# Findings

- Most effective placement: immediately before a network's final affine layer.
  - More efficient (fewer backprop steps to compute twice).
  - Otherwise, combinatoric possibilities: d-choose-p!
  - Exception: networks which propagate loss from multiple places, e.g. GoogLeNet [4].
- It is useful to vary the method used between trials. Either change ρ, intersperse vanilla Dropout trials, or intersperse no-Dropout trials.
- We expect certain tasks to be better suited to Malicious Dropout than others. We are informed by how vanilla Dropout fares in certain domains (e.g. relatively poorly in recurrent networks [3]).
- Network with two CONV layers and a MalDrop layer on CIFAR10 data: performance similar to network with regular Dropout layer, with exception of reverse annealing.
- Different modes of rho yield similar results.

# **Malicious Dropout**

Jack Maris and Iskandar Pashayev

Can intermittently dropping prominent features improve generalization?



equal to the its contribution to  $c_{yi}$  (that is,  $h_j w_{j,yi}$ ) minus  $\omega$  times the The top  $\rho$  neurons are dropped. Then h is recalculated.

## **ρ** Schedules

ition.

form(0,*n*) at each iteration, where *n* is the number of neurons the layer.

- rease some initial  $\rho_0$  with each epoch  $i \ge 0$ , with a maximum of L number of neurons. crease some initial  $\rho_0$  with each epoch  $i \ge 0$ , with a minimum of 0 neurons.
- and pick a parameter s. When t % s = 0 use Maldrop; otherwise, use vanilla Dropout.



[1] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Re- search, 15(1):1929–1958, 2014.

[2] O. Rippel, M. Gelbart, and R. Adams. Learning ordered representations with nested dropout. In International Conference on Machine Learning, pages 1746–1754, 2014.

[3] C.Szegedy, W.Liu, Y.Jia, P.Sermanet, S.Reed, D.Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[4] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. CoRR, abs/1409.2329, 2014.





# Citations