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Can intermittently dropping prominent features improve generalization?

Problem / Background Our Solution Models

What is a zebra? We recognize that it has stripes,

hooves, and a face with a certain curvature. Yi Yi

A network which only learns that it has stripes may get

great Loss on training data. But it would generalize poorly: Y, Y,
it might classify a fence as a zebra. We want the network
to learn what we learn. = 0 =0 =0

Dropout helps by occasionally dropping, e.g. Y, 2y

We run a simple model as a proof-of-concept,

=0 ~Q =0 and also append Maldrop to SqueezeNet.

e Conv (with ReLU activation function) to
Spatial BatchNorm to Conv (with RelLU

stripe-ness [1]. This forces the network to learn other
features. L2 normalization can prevent certain features
from dominating. And Dropout modifications in the
literature include Nested Dropout [2], which aims at h C m h C

dimensionality reduction. activation function) to to
e |ImageNet and CIFAR.
But Dropout can be cumbersome. What if we were to Each neuron h. is given a score equal to the its contribution to ¢ i (that is, hjwj' yi) Mminus o times the ° Py'gorch. : d
target the most useful features on some trials? sum of its contributions to ciyi.The top p heurons are dropped. 'then h is recalculated. o Code: gitio/maldrop.
We propose a method for dropping the features which Forward Annealing
cause the loss to increase the most. We then report results T
of various mechanisms for interleaving this method. _ p Schedules i =
We try 5 different p schedules. ! 1 + e—{po+i)
Static: p is the same at each iteration.
Random: p is sampled from ~Uniform(0,n) at each iteration, where n is the number of neurons the layer. Reverse Annealing
Forward Annealing: Steadily increase some initial po with each epoch i 2 0, with a maximum of L number of neurons. 1
Reverse Annealing: .Steadily decrease some initial po with each epoch i > O, with a minimum of O neurons. pi = I . (1 — : )
Periodic: say t is the trial number, and pick a parameter s. When t % s = O use Maldrop; otherwise, use vanilla Dropout. 1+ E_'[P*'+“':'
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