
YOLO Net on iOS
Maneesh Apte, Simar Mangat, Priyanka Sekhar
(mapte05, smangat, psekhar)

Introduction

Architectures

With the growing popularity of neural networks, object
detection on images and subsequently videos has
increasingly become a reality. However, fast object
detection in real time with high accuracy still has large
room for improvement. Our project aims to extend existing
work to 1) have higher accuracy and 2) to be deployed to iOS
via an iPhone app that uses the phone’s video camera.
Mobile detection has applications in education, autonomous
vehicles, and consumer facial recognition.

Previous Approaches
Previous work has focused on optimum design on large
desktop GPUs. However, the speed of the net becomes much
more critical on mobile.

Approach and Evaluation
We are using GoogleNet [3] and SqueezeNet [1] to modify
tiny-YOLO. We evaluate the speed (FPS) and accuracy (mAP)
of our hybrid nets relative to the tiny-YOLO baseline. Our
initial app targets language learning through object
detection.

Mobile
-Translation to Metal
- limitation - batch norm

mAP Equation
Fire Diagram

GoogleNet Inspired Diagram
Some Diagram with an iPhone

Discussion

Next Steps

References

Figures

We work primarily with the VOC 2012 dataset. This
dataset has 20 classes and a tractable 11,000 images. The
dataset allows for high precision and thus meaningful
consumer use cases on mobile.

Fire Layer

Figure 1:
We rely heavily on
the tiny YOLO model,
a modification to
YOLO that uses 9
conv/maxpool layers.

We modify the darkflow [2] YOLO framework to include
either Fire layers - as implemented in SqueezeNet - or
GoogleNet-inspired “inception” layers.

1x1

1x1
3x3

s

e

Out
(Concat)

Figure 2: Fire Layer Figure 3: Inception Layer

Mobile
To implement the net on mobile, we made use of the Metal
framework [4] and the Forge wrapper library [4] that abstracts
some of the low level Metal code. This tensorflow-based
framework allows real-time feedforward prediction on mobile
devices. That said, one drawback to Metal is the lack of a built
in batchnorm layer, which is important for both speed and
accuracy in the darkflow implementation. To tackle this, we
folded the trained batch norm weights into the preceding
convolutional layers. The app in its current form does real
time object detection of 20 classes in 5 different languages.
Screenshots are shown below.

Our current highest performing tiny-YOLO net runs at
8-10 FPS on the iPhone 7 (iOS 10). We calculated a mAP of
0.5 using equations (1) and (2). [5]

(1) (2)

While our hybrid nets did converge, they had low mAP
scores, suggesting the need for more thorough
hyperparameter tuning. The SqueezeNet inspired model
trained at a comparable speed to tiny-YOLO.

Figure 4: Fire Layer Net Loss Figure 5: Google LayerNet Loss

Our preliminary results indicate that a SqueezeNet inspired
model could have comparable, potentially faster, training
and prediction times to the benchmark tiny-YOLO, while the
GoogleNet inspiration appears to move more slowly but
more accurately. The app we built indicates that real-time
detection for mobile can be done in near real time. We plan
to further tune hyperparameters and refine training on our
two nets. We are also looking into applications for mobile
facial recognition and its implications for mobile AR.

[1] SqueezeNet - https://arxiv.org/pdf/1602.07360.pdf
[2] Darkflow - https://github.com/thtrieu/darkflow
[3] GoogleNet - https://arxiv.org/pdf/1409.4842.pdf
[4] Metal - http://machinethink.net/blog/object-detection-with-yolo/
[5] mAP -
http://cs229.stanford.edu/proj2016/report/BuhlerLambertVilim-CS229FinalProjectRepo
rt.pdf

https://arxiv.org/pdf/1602.07360.pdf
https://github.com/thtrieu/darkflow
https://arxiv.org/pdf/1409.4842.pdf
http://machinethink.net/blog/object-detection-with-yolo/
http://cs229.stanford.edu/proj2016/report/BuhlerLambertVilim-CS229FinalProjectReport.pdf
http://cs229.stanford.edu/proj2016/report/BuhlerLambertVilim-CS229FinalProjectReport.pdf
http://cs229.stanford.edu/proj2016/report/BuhlerLambertVilim-CS229FinalProjectReport.pdf

