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Introduction

Architectures

With the growing popularity of neural networks, object 
detection on images and subsequently videos has 
increasingly become a reality. However, fast object 
detection in real time with high accuracy still has large 
room for improvement. Our project aims to extend existing 
work to 1) have higher accuracy and 2) to be deployed to iOS 
via an iPhone app that uses the phone’s video camera. 
Mobile detection has applications in education, autonomous 
vehicles, and consumer facial recognition.

Previous Approaches
Previous work has focused on optimum design on large 
desktop GPUs. However, the speed of the net becomes much 
more critical on mobile.

Approach and Evaluation
We are using GoogleNet [3] and SqueezeNet [1] to modify 
tiny-YOLO. We evaluate the speed (FPS) and accuracy (mAP) 
of our hybrid nets relative to the tiny-YOLO baseline. Our 
initial app targets language learning through object 
detection. 
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We work primarily with the VOC 2012 dataset. This 
dataset has 20 classes and a  tractable 11,000 images. The 
dataset allows for high precision and thus meaningful 
consumer use cases on mobile.

Fire Layer

Figure 1: 
We rely heavily on 
the tiny YOLO model, 
a modification to 
YOLO that uses 9 
conv/maxpool layers. 

We modify the darkflow [2] YOLO framework to include 
either Fire layers - as implemented in SqueezeNet - or 
GoogleNet-inspired “inception” layers. 
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Figure 2: Fire Layer Figure 3: Inception Layer

Mobile
To implement the net on mobile, we made use of the Metal 
framework [4] and the Forge wrapper library [4]  that abstracts 
some of the low level Metal code. This tensorflow-based 
framework allows real-time feedforward prediction on mobile 
devices. That said, one drawback to Metal is the lack of a built 
in batchnorm layer, which is important for both speed and 
accuracy  in the darkflow implementation.  To tackle this,  we 
folded  the trained batch norm weights into the preceding 
convolutional layers. The app in its current form  does real 
time object detection of 20 classes in 5 different languages. 
Screenshots are shown below. 

Our current highest performing tiny-YOLO net runs at 
8-10 FPS on the iPhone 7 (iOS 10). We calculated a mAP of 
0.5 using equations (1) and (2). [5]

(1) (2)

While our hybrid nets did converge, they had low mAP 
scores, suggesting the need for more thorough 
hyperparameter tuning. The SqueezeNet inspired model 
trained at a comparable speed to tiny-YOLO. 

Figure 4: Fire Layer Net Loss Figure 5: Google LayerNet Loss

Our preliminary results indicate that a SqueezeNet inspired 
model could have comparable, potentially faster, training 
and prediction times to the benchmark tiny-YOLO, while the 
GoogleNet inspiration appears to move more slowly but 
more accurately. The app we built indicates that real-time 
detection for mobile can be done in near real time. We plan 
to further tune hyperparameters and refine training on our 
two nets. We are also looking into applications for mobile 
facial recognition and its implications for mobile AR. 

[1] SqueezeNet - https://arxiv.org/pdf/1602.07360.pdf
[2] Darkflow - https://github.com/thtrieu/darkflow 
[3] GoogleNet - https://arxiv.org/pdf/1409.4842.pdf
[4] Metal - http://machinethink.net/blog/object-detection-with-yolo/ 
[5] mAP - 
http://cs229.stanford.edu/proj2016/report/BuhlerLambertVilim-CS229FinalProjectRepo
rt.pdf 
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