Super Resolution to Improve Classification Accuracy of Small Images

Christian Martinez-Nieves Stanford University
Luke Jaffe
Stanford University jaffe5@stanford.edu

Shiv Sundram
Stanford University
shiv1@stanford.edu

Introduction

- We apply single-image super resolution (SISR) as a pre-processing step for solving the image classification problem on image datasets.
- We expect that using super-resolution as a pre-processing step will help yield higher classification accuracy.
- Super-resolution methods will often use either per-pixel loss functions, or perceptual loss functions [1].
- Previous approaches to the SISR task have focused on improving image quality as measured by human perception or pixel signal-to-noise ratio (PSNR)
- Our goal is to improve machine perception of imagery by enhancing discriminative features.

figure 1: Comparison of training accuracy for CIFAR-10 images using bicubic, pixel loss and perceptual loss based upsampling.

Problem Statement

- Determine if super-resolution can be used as a pre-processing step to improve image classification accuracy.
- Carry out experiments using general image classification datasets, like CIFAR-10, as well as domain specific datasets, like Food-101.
- Evaluation will be based on comparing classification accuracy between the original image datasets` and the super-resolved image datasets

Datasets

- CIFAR-10: 60,000 32×32 images with 10 basic classes, and 6000 images per class.
- STL-10: 100,000 unlabeled 96x96 images, similar to CIFAR-10 domain.
- IMAGENET: 15 million labeled high-resolution images in over 22,000 categories.
- Microsoft COCO: 300,000 labeled high-resolution images with 80 categories.
- Food-101: 101,000 images with 101 food categories, each class having 1,000 images.

Figure 3: Comparison of training accuracy for Foods-101 images using bicubic, and perceptual loss based upsampling.

Figure 5: Original CIFAR10 images ar juxtaposed against bicubic upsampled (2nd col), pixel based upsampled (2nd col), pixel based
upsampled (3rd col), and perceptual based upsampled (4th col).

Figure 6: Original Food 101 images ar juxtaposed against bicubic upsampled (2nd col), and perceptual based upsampled (3rd col).

Approach

- We investigated three approaches for upsampling
- Shi et al. [2] , uses a standard per-pixel loss function to train an array of upscaling filters. Trained on STL10
- Johnson et al. [3], which uses perceptual loss functions (also used for fast style transfer) and histogram matching. Trained on COCO. Loss network is a pre-trained VGG network trained on Imagenet
- bicubic interpolation, mainly to be used as a control
- In all cases, we used a VGG network to perform classification (with some extra layers added to handle the larger, enhanced inputs).

Results

- Super-resolution adds features that make an image more aesthetically pleasing to a human, but it does not necessarily add features that make classes more separable to a classifier
- Final classification accuracy did not improve significantly with super-resolution used as a preprocessing step.
- However, Johnson's super-resolution method resulted in significantly higher test accuracy at the beginning of training
- Classification accuracy for bicubic and super-resolved images is higher than original images'; bicubic and super-resolved images are fed into VGG with more layers (to handle larger inputs

Conclusion

- Since classification accuracy did not improve significantly when using super-resolution, our results did not support our hypothesis
- However, the original hypothesis may still hold when working with domain specific datasets.
- Since super resolution did result in higher test accuracy at the beginning of training a CNN, it may still be possible that using super resolution can help speedup training under certain circumstances.

Reference:

