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Unmanned Aerial Vehicle (UAV) technology has led 

to a proliferation of affordable vehicles for hobbyist 

and low-end commercial use. Depth maps are 

critical for guidance and collision avoidance

Common sensors for depth: LIDAR / RADAR

Depth Sensors = $$$$$             Visual Cameras = $

Task: extract depth maps from single images

Introduction

Real time images from a UAV should inexpensively 

and reliably be translated into depth maps

Problem Statement

Microsoft Airsim1: a sophisticated UAV simulation 

environment 

• Made to generate UAV images for deep learning

• Gathered raw images and depth images from a 

simulated neighborhood environment

• Collected 1,963 pairs of images

Divided the data as follows:     Function Data %

Train 70

Validate 20

Test 10 

Datasets

The network generated and Airsim generated 

depth images are compared at a pixel level using 

the mean squared error (MSE)

The MSEs are averaged for the full test set

Experimental Evaluation

Performance Comparison:

• CycleGAN depth appears crisp, but color 

information must be preserved in the depth map, 

leading to larger errors in depth values

• Pix2Pix does not have cycle problems, and 

maintains detail with better depth estimates

• Multi-Scale loses image clarity, but the depth

estimates are good on average

• Style Transfer retains features, but spurious 

details impact depth values

Next Steps:

• Investigate different evaluation metrics

• Sweep through hyper-parameters

Initial claim: based on our results we claim that 

images can be used to create depth images 

resulting in affordable 3D scene maps 

Conclusions and Next Steps
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1. Pix2Pix and CycleGAN2

• Image translation approach

• Unsupervised

• Multi-objective

1. Multi-Scale Deep Network3

• Coarse and fine scales

• Supervised

• Scale-invariant error

2. Style Transfer CNN4

• Auto-encoder CNN

• Depths reduced to features

• Transfer loss on features L = F - FT
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