
StereoPhonic: Depth from Stereo on Phones

Introduction

Model

Phone-specific Features

Performance on Mobile Platform

Training

Results

Robert Konrad, Nitish Padmanaban
CS 231n Final Project

Widespread adoption of augmented reality
will make it necessary to extract depth from
the environment on a portable device with
limited computational resources.

A recent trend in mobile phones is the
inclusion of multiple cameras, making stereo

We use a Siamese architecture. Both the left and right images
are fed into the same network, then we take the inner product
of the output of the final convolutional layer of the left and
right images. The inner product is computed for all candidate
disparity shifts, with the argmax used as the disparity.

Batch normalization was folded into the convolutional layer
to reduce the compute footprint. This is computed from the
original convolutional and batch normalization weights and
moving averages as

with the equivalent kernel k’ and bias b’ used on the phone.

We train using the KITTI Stereo 2015
Dataset. When training, we find that the
network trains mostly in under an epoch
with a higher learning rate, and no other
parameters significantly affect the result.
No regularization is needed due to lack of
overfit in the validation error.

We observe better accuracy with more
complex models without incurring any
overfit, as seen in the table to the right.
However, we choose to use the less
complex model for efficiency.

We achieve a final test set error of 19.69% (i.e. an accuracy of 80.31%). This corresponds to an average offset from the correct
disparity of about 7.5 pixels. Example inputs from the validation set, our estimate, and the error are below.

As reported by Luo et al., the performance on a desktop machine tasks less than a second to process an image. However, as
expected, the phone takes a significantly longer time, taking over a minute.

Considering the recent developments in this space, such as Caffe2Go, Core ML, and TensorFlow Lite, we expect that the process
of putting large networks on a mobile will become easier. New models could also benefit from a focus on efficiency over the
increasingly marginal gains in accuracy provided by deeper, more complicated networks.

Left

9

9

9

Right

265

To grayscale

9
9

7
5

3
1

1

357

3

3

3

3 3

3

3

3

1
32

32
32

32

+256
+256

+256
+256

+256

conv
normalize

relu

conv
normalize

relu

conv

argmax
gives disparity

conv
normalize

relu

257

257

32

×
1

32

x� = k ∗ x+ b
(

x� − µ√
σ2 + ε

)
γ + β =

(
k ∗ x+ b− µ√

σ2 + ε

)
γ + β

=

(
γ√

σ2 + ε
k

)
∗ x+

(
(b− µ)γ√
σ2 + ε

+ β

)

= k� ∗ x+ b�

2

3

4

5

6

7

8

9

0 20 40 60 80 100
Iteration (thousands)

Lo
ss

Train
Validation

Iteration

Lo
ss

0 500

9

3

Initial Learning

0 20 40 60 80 100
Iteration (thousands)

Ac
cu

ra
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

Ac
cu

ra
cy

0 500

0.9 Initial Learning

Train
Validation

Architecture Hyperparameters Training Validation
Layers Filters/layer Learning Rate Optimizer Batch size Loss % > 3px Loss % > 3px

9 32 0.1 Adam 512 5.5491 100 n/a n/a
4 32 0.01 Adagrad 512 3.4358 34.23 3.3875 32.6
4 32 0.01 RMSProp 512 3.2485 30.39 3.2319 29.43
4 32 0.001 Adam 512 3.2577 30.77 3.2208 29.17
4 32 0.01 Adam 128 3.2449 30.17 3.226 28.85
4 32 0.01 Adam 1024 3.1834 29.25 3.1968 28.78
4 32 0.01 Adam 256 3.197 29.43 3.1969 28.69
4 32 0.01 Adam 512 3.2002 29.5 3.1833 28.39
4 64 0.001 Adam 512 3.0807 27.9 3.0658 26.59
9 32 0.01 Adam 512 2.6154 19.58 2.7334 19.82
9 64 0.01 Adagrad 128 2.2317 11.59 2.1731 9.63

We also recreate the results of the original paper, to verify our
network on TensorFlow. The 9-layer, 64-filter network in the
last row of the table gives a validation error of 9.63%, which is
within range of Luo et al.’s result of 8.95%.

Left Input Image Ground Truth Depth Map Estimated Depth Map Overlaid Error Map

Baseline:
11mm

images an attractive option for calculating depth.

Estimating depth from stereo images is an ideally suited
problem for neural networks: humans seem capable of robust
judgments of relative depth from stereo images, but doing so
computationally remains on open problem.

However, running a network on a phone imposes constraints
on memory, speed, and therefore the resulting size of the
network, making complex models difficult to deploy.

We implement an efficient network based on Luo et al. with
the ARM Compute Library for GPU-enabled computation on a
mobile device.

