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Widespread adoption of augmented reality 
will make it necessary to extract depth from 
the environment on a portable device with 
limited computational resources.

A recent trend in mobile phones is the 
inclusion of multiple cameras, making stereo 

We use a Siamese architecture. Both the left and right images 
are fed into the same network, then we take the inner product 
of the output of the final convolutional layer of the left and 
right images. The inner product is computed for all candidate 
disparity shifts, with the argmax used as the disparity.

Batch normalization was folded into the convolutional layer 
to reduce the compute footprint. This is computed from the 
original convolutional and batch normalization weights and 
moving averages as

with the equivalent kernel k’ and bias b’ used on the phone.

We train using the KITTI Stereo 2015 
Dataset. When training, we find that the 
network trains mostly in under an epoch 
with a higher learning rate, and no other 
parameters significantly affect the result. 
No regularization is needed due to lack of 
overfit in the validation error.

We observe better accuracy with more 
complex models without incurring any 
overfit, as seen in the table to the right. 
However, we choose to use the less  
complex model for efficiency.

We achieve a final test set error of 19.69% (i.e. an accuracy of 80.31%). This corresponds to an average offset from the correct 
disparity of about 7.5 pixels. Example inputs from the validation set, our estimate, and the error are below.

As reported by Luo et al., the performance on a desktop machine tasks less than a second to process an image. However, as 
expected, the phone takes a significantly longer time, taking over a minute.

Considering the recent developments in this space, such as Caffe2Go, Core ML, and TensorFlow Lite, we expect that the process 
of putting large networks on a mobile will become easier. New models could also benefit from a focus on efficiency over the 
increasingly marginal gains in accuracy provided by deeper, more complicated networks.
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Architecture Hyperparameters Training Validation
Layers Filters/layer Learning Rate Optimizer Batch size Loss % > 3px Loss % > 3px

9 32 0.1 Adam 512 5.5491 100 n/a n/a
4 32 0.01 Adagrad 512 3.4358 34.23 3.3875 32.6
4 32 0.01 RMSProp 512 3.2485 30.39 3.2319 29.43
4 32 0.001 Adam 512 3.2577 30.77 3.2208 29.17
4 32 0.01 Adam 128 3.2449 30.17 3.226 28.85
4 32 0.01 Adam 1024 3.1834 29.25 3.1968 28.78
4 32 0.01 Adam 256 3.197 29.43 3.1969 28.69
4 32 0.01 Adam 512 3.2002 29.5 3.1833 28.39
4 64 0.001 Adam 512 3.0807 27.9 3.0658 26.59
9 32 0.01 Adam 512 2.6154 19.58 2.7334 19.82
9 64 0.01 Adagrad 128 2.2317 11.59 2.1731 9.63

We also recreate the results of the original paper, to verify our 
network on TensorFlow. The 9-layer, 64-filter network in the 
last row of the table gives a validation error of 9.63%, which is 
within range of Luo et al.’s result of 8.95%.
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images an attractive option for calculating depth.

Estimating depth from stereo images is an ideally suited 
problem for neural networks: humans seem capable of robust 
judgments of relative depth from stereo images, but doing so 
computationally remains on open problem.

However, running a network on a phone imposes constraints 
on memory, speed, and therefore the resulting size of the 
network, making complex models difficult to deploy.

We implement an efficient network based on Luo et al. with 
the ARM Compute Library for GPU-enabled computation on a 
mobile device.


