

To Post or Not To Post: Using CNNs to **Classify Social Media Worthy Images**

Summary

Problem: Determine the feasibility for CNNs to predict whether photos depict our best selves

Approach: Classify images based on their social media worthiness score using a CNN trained with transfer learning

Evaluation: Classification accuracy & heat maps

Key Results: Classification results are promising with reasonable accuracy rates and heat maps. Yet, the results also highlight differences between the model's and a human's vision

Background

People are picky about how they are depicted in photographs

Eves closed Looking away Not smiling Many other concerns!

Numerous exciting applications exist to apply these CNN models to improve photography

Relevant prior work classifies other abstract gualities (e.g. beauty, emotion) instead of objects in an image. Best self has not been studied yet

Dataset

Data set contained 424 images of my face, which were cropped photos from my personal collection. Each image was assigned a social media worthiness score of 1 to 5

Example Images and Their Social Media Worthiness Scores

Findings

Model had over 50% accuracy with particularly strong performance for Score 1 & 3 images

Heat maps support that classification is driven by important facial features (especially eyes). Results are consistent across different poses and scores

Actual Score	1	2	3	4	5	Overall	
Classification Accuracy	67%	42%	63%	42%	0%	51%	it Map
Mean Abs. Error	0.3	0.7	0.5	0.8	1.5	0.6	Hea

Score 1

Score 3

Lauren Blake (Iblake@stanford.edu)

Fooling Images

Fooling images result from altering an image in order to "trick" the model to change its score

Changes that are nearly invisible to human eves are able to significantly change image scores. People are unlikely to be tricked by these changes

Score

Original <u>Image</u>	Score 5 Fooling Image	Magnified Difference (50x)				
Limitations						

Very small data set with only one person. In particular, the data doesn't include people with different genders, races, or ethnicities

Would ideally train with Euclidean loss to capture the sequential relationship between scores

ResNet-18 model may not be the optimal feature extractor for face images