
Gaze Estimation on Mobile Devices with Deep Convolutional Networks
Team Gazelle: Matthew Kim, Owen Wang (CS 231A), Natalie Ng (CS 231A)

Introduction
Eye-tracking has important applications in computer vision, medical
diagnoses, and other areas. However, most eye-tracking solutions today
suffer from high cost, custom hardware, or lack of testing in real world
conditions. Gaze estimation on phones with cameras offer a solution through
the benefits of widespread usage, fixed position of the camera relative to the
screen, and rapid development of mobile camera technology. For this task,
we attempt to replicate “Eye Tracking for Everyone” (Krafka, et al.) while
introducing new input features and architectural design elements.

Introduction
Affordable housing in the United States has failed both in quality and
quantity to meet demand from low-income families. One solution is to build
more affordable housing, but locating neighborhoods appropriate for future
construction is diffiult. Our project uses existing data on public housing
buildings from HUD in an attempt to understand what types of housing have
been built. We then predict with Census block data on schools, job
proximity, demographics whether each neighborhood block would be
suitable for future development and the type of housing that should be built.

Model/Architecture

Features: images of size [144, 144, 3] for 3 input features, 1 face grid
mask, histogram of gradient on face images
Pipeline: 3 CNNs for the 3 images, connected with face grid mask and
histogram of gradient on face via FC layers
Training: from scratch on Tensorflow, learning rate = 0.00001,
optimizer = SGD

Evaluation
Metric for training: RMS distance (in cm) from location of the true
gaze fixation

Scenarios

Implementation Details

HoG: CNN:

16 pixels in cell 11 x 11 / 96 relu conv, 2 x 2 / 2 pool

2 cells in block 5 x 5 / 256 relu conv

Stride 8 3 x 3 / 384 relu conv, 2 x 2 / 2 pool

1 x 1 / 64 relu conv

- (Input) Large variability in pose, appearance, and illumination
- (Features) HoG, OpenCV vs. Mechanical Turk bounding boxes
- (Architecture) Adding pooling layers and batch normalization
- (Hyperparameters) Changing optimizers, learning rates, LR decay

Previous Approaches

Input: images of faces looking at the screen of a mobile device
with a camera
Output: (x, y) coordinates in cm where the model estimates the
gaze to be where the origin is the location of the camera

Approach: OpenCV for features including bounding boxes for
eyes and face, CNN architecture on Tensorflow to train on
features

Dataset
MIT CSAIL “GazeCapture” dataset has 2.5 million images from
1474 crowd-sourced participants with corresponding dot
locations to evaluate output coordinates on.

The entire dataset is hundreds of GB, with JSONs for four
features per subject: left eye, right eye, face, and face grid mask.
13 fixed dot locations per device orientation for each subject

Problem Statement

Preliminary Findings

Future Direction

- Need to efficiently create HoG and OpenCV face/eye detection features
- Data processing of samples is currently a bottleneck
- With the previous iTracker architecture as a template, continue to tweak
architecture to balance convergence time with accuracy

Shape-based models
(e.g. Active Appearance Model)

Corneal reflection-based
models

Method Error

Center 7.54

Gazelle
(so far)

6.34

AlexNet 3.09

iTracker 2.58Results are heavily dependent on number of
samples and subjects. More training required

