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What CNN models work best for facial emotion 
recognition (FER) and why?  

Robo*cs	
•  	Allow	robots	to	be6er	understand	facial	emo*ons	
•  	Supplement	spoken	cues	

Security	&	Surveillance	
•  	Iden*fy	suspicious	behavior	
•  	Prevent	danger		

Adver*sing	
•  	Tailor	ads	based	on	moods	and	reac*ons	

Social	Media	
•  	Automa*cally	filter	out	images	
•  	Be6er	news	feeds	

•  Existing architectures 
•  Alexnet 
•  VGG-16 
•  Inception 
•  Inception-Resnet 

 
•  3-layer CNN 

•  [conv - relu - 2x2 max pool] – [affine – relu] – 
[affine] 

•  48 filters in the first conv layer, each 7 x 7 x 1  

•  Test on wild images 
•  Test different network and filter sizes 
•  Continue to improve models 

Dataset
•  Kaggle FER Challenge: 28,709 48 × 48 pixel grayscale 

images  
•  Pre-processed and centered 

Conclusion
•  Faster convergence and higher accuracy with 

simpler networks 
•  Likely due to use of centered grayscale 

images for training  
•  Potential to greatly increase accuracy of 

Inception and Inception-Resnet for FER to 
match ImageNet accuracies 

•  For FER, rate of convergence approximately 
same for existing architectures 

•  Tendency for overfitting requires high 
regularization 

 

Model	 FER	Accuracy	 ImageNet	Accuracy	

AlexNet	 51.0%	 57.0%	
Pre-VGG	 34.0%	 -	
VGG-16	 49.4%	 71.5%	
Incep*on	 46.3%	 80.2%	

Incep*on-Resnet	 45.7%	 80.4%	
Shallow	3-layer	CNN	 52.1%	 -		

Fig 3. Training loss and training 
accuracy for existing architectures 

Fig 4. Training loss and training 
accuracy for shallow 3-layer CNN 

Fig 1. Training accuracy for different 
update rules for a shallow 3-layer CNN 

Fig 2. Training accuracy for different 
numbers of hidden dimensions for a shallow 

3-layer CNN 
•  RMSProp converges faster 
•  Adaptive update rules 

overall better 

•  Optimal number of hidden 
dimensions is ~500 

•  Higher stability for higher 
number of hidden dimensions  

•  Shallow CNN trains faster due to fewer hyper-parameters 
•  For FER and small dataset, shallow CNN has comparable 

performance to deeper models  


