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» Consists of a force balance and mass conservation
= Famously complex (Millenium Prize)
= Computations of highly turbulent flows are intractible.

, log K

» Turbulence is local

= Deep convolutional networks may provide a
sound description of turbulent structures.

= A generative model may be able to produce
turbulence flow for modeling purposes.
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Evaluating the error loss on the test set
= Examining the generated data

Extending the model to a 3D ConvNet

Incorporating different flows.

Sy 20 30 ' 0 10 20
EXpeCted Distribution Prior Test input Reconstruction

reconstruction by approximated by distribution * The reproductions are rather noisy.
decoder network encoder network = More optimal parameters are likely yet to be
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