
Unsupervised Learning:
● Input: Unlabelled image data
● Output: Reconstructed images
● Evaluation: Disentanglement
Supervised Learning:
● Input: Labelled image data
● Output: Classification label of image
● Evaluation: Test classification error
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Goal: Improve classification performance using unlabelled data

● There is a wealth of unlabelled data; labelled data is scarce
○ Unsupervised learning can learn a representation of the domain

● Disentangled representations contain statistically independent 
generative factors of the data
○ Improves representation quality and prevents latent co-adaptation

● Supervised learning benefits from knowledge of the underlying factors

Motivation

Problem Statement

MNIST Handwritten Digits [1]

● 55,000 training images
● 10,000 test images
● 10 classes
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a) VAE architecture [2]
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b) Supervised architecture a) VAE sampler [2]

Quantitative Results

Images per 
class

Classifier

Vanilla ᶔ=1 (VAE) ᶔ=4 (DVAE)

3 57.7% 60.7% 63.7%

10 72.4% 82.3% 83.6%

ALL 98.4% 98.4% 98.4%

z10 - latent variable controlling rotation

z9 - latent variable controlling thickness

z7 - latent variable with no effect

CNN DVAE reconstructions of MNIST digits

Qualitative Results

● Conclusion: Disentangling VAE [3] improves classification performance over 
standard VAE and vanilla baseline when labelled data is scarce

● Future work: 1) Use synthetic MNIST with more continuous data (e.g. continuous 
rotations) so the DVAE can better learn the generative manifolds, and 2) use a 
semi-supervised learning objective on top of unsupervised pre-training.
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