
Video Prediction with Action Feedback

Pascal Pompey, Sudeep Sudhir Jain, Andrei Bajenov

CS231n, Stanford

Topic
• Visual prediction of future events based on past obser-

vations using CNN and RNN models.

• Many uses, including self-driving cars, robotics, etc.

Problem Setting
• Solving the general problem is very hard. There are

many variables at play, and making such a model is un-

feasible given our resources.

• We simplify the problem by solving it for a much sim-

pler environment: the Atari Pac-Man game.

• Pac-Man is a good candidate because it is: (1) Relatively

complex and (2) Has some elements of uncertainty (e.g.

ghosts).

• It is also a fairly deterministic game in that one can pre-

dict the next frame given the current frame and the game

state.

Data Generation
• We use the OpenAI Gym environment to generate a time

series of in-game images. These images are then used

for training and evaluation.

• The Pac-Man is fed random actions to generate the game-

play.

• We attempt to predict the next frame of the image given

the previous sequence of frames and the current action

taken.

Baseline
Use the current frame as the prediction for the next frame.

• In Pac-Man, changes between consecutive frames are

very minimal, making this a very hard baseline to beat.

The prediction of the game environment is perfectly sharp,

so the only observed error is in the position of the ghosts

and the Pac-Man.

• RMSE tends to generate blurry images, which makes it

even harder to design models that would beat the sharp

baseline.

Architectural Considerations
First observation:

• Predicting the difference is easier than predicting the

whole frame. The final model’s output is subtracted

from the original image:

modelOutput = neuralNet(output) - img

• This method enabled us to generate images close to the

baseline. It is easier for the model to predict a blank

image than a complex one.

Second observation:

• The core objects in the game have a given size and evolved

in a world of paths delimited by walls. This means that,

to be able to understand what is happening, the final lay-

ers of a CNN need to have a minimum receptive field of

at least the object and its surrounding walls.

• After some tests, it was concluded that the minimal re-

ceptive field to see Pac-Man or a ghost along with its

two closest walls was 13 pixels. 13 pixels is therefore

the lower bound for the receptive field of our final en-

coding CNN layers.

Model 1: Purely Forward CNN
Model Description:

• Convolutional layers with filter size 3 and 120 filters

conserving the original image size (padding 1, stride 1)

are stacked together to reach the intended receptive field

of 13.

• Then ConvTranspose layers with filter size 3 conserving

the original image size (padding 1, stride 1) are stacked

together until the final layer generates an image.

Results:

This model was able to get results that were slightly (yet

not significantly) better than the baseline. Observing the

generated images and their difference with the target re-

vealed that:

• The model was able to capture the shapes of the Pac-

Man and ghosts

• The RMSE criterion was pushing the model to mean

values in areas of high uncertainty, resulting to more

blurry images around the Pac-Man, ghosts or blinking

objects.

Figure 1: Model 1 Generated Image and Loss

Model 2: Reducing
Auto-Encoder

Model Description:

A CNN encoder divides the size of the image by 2 in the

height and width, until a receptive field of at least 13 is

reached. To do this, two methods are used:

1. Stride of 2

2. Max Pooling Layers

A ConvTranspose decoder scales up the generated fields

until the size of the original image is recreated.

Results:

The reducing auto-encoder achieved slightly worse accu-

racy than the purely forward CNN and the baseline, but:

• It did generate much sharper images than the purely for-

ward CNN.

• It did demonstrate that it was possible to reduce the

number of parameters substantially while still being able

to regenerate good images.

Figure 2: Model 2 Generated image and Loss

Model 3: Reducing Encoder
alongside an RNN

Model Description:

Pac-Man follows the Markov property. Based on a suit-

able state and the current image, it is possible to fully de-

termine the next image and state. It is therefore perfectly

legitimate to try and use some RNNs as core components

of the architecture.

RNNs contain fully connected layers and are therefore very

memory intensive. This means that using them without

triggering out of memory errors requires aggressively scal-

ing down the original image of (3*210*160) to a much

smaller parameters set.

The architecture was therefore to:

1. Use a convolutional encoder to reduce the original im-

age to a reasonable size.

2. Apply the RNN on the flattened output of that image.

3. Use a convolutional decoder to reconstruct the image

from the RNNs updated state

Results:

We were not able to achieve a loss close to the baseline.

With a bit more parameter tuning we are hoping that this

model will be able to beat the baseline.

Figure 3: Model 3 Loss

References

[1] Mathieu, Michael, Camille Couprie, and Yann LeCun.

”Deep multi-scale video prediction beyond mean square

error.” arXiv preprint arXiv:1511.05440 (2015).

[2] Oh, Junhyuk, et al. ”Action-conditional video pre-

diction using deep networks in atari games.” Advances in

Neural Information Processing Systems . 2015.

[3] Bengio, Yoshua, et al. ”Generalized denoising auto-

encoders as generative models.” Advances in Neural In-

formation Processing Systems . 2013.


