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Fig 3. Discriminator Network Structure

Discriminator: The discriminator compares the generated image
with the real image. Its input is the concatenation of line image,
color hints and the generated/real image. In our network, we use
a simple stack of convolutional layers to output a probability
scalar. The network structure is in Fig 3.
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Fig 4. Improved-WGAN discriminator loss curve.

(-1 * d_loss) represents the W-distance. Smaller the distance
represents higher similarity between the generated images and
real images. From Fig 4 we can see that the discriminator's
loss steadily go up until convergence.
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